BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17196220)

  • 1. Local encoding of computationally designed enzyme activity.
    Allert M; Dwyer MA; Hellinga HW
    J Mol Biol; 2007 Feb; 366(3):945-53. PubMed ID: 17196220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational design of a biologically active enzyme.
    Dwyer MA; Looger LL; Hellinga HW
    Science; 2004 Jun; 304(5679):1967-71. PubMed ID: 15218149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemistry. De novo design of an enzyme.
    Sterner R; Schmid FX
    Science; 2004 Jun; 304(5679):1916-7. PubMed ID: 15218133
    [No Abstract]   [Full Text] [Related]  

  • 4. Active site properties of monomeric triosephosphate isomerase (monoTIM) as deduced from mutational and structural studies.
    Schliebs W; Thanki N; Eritja R; Wierenga R
    Protein Sci; 1996 Feb; 5(2):229-39. PubMed ID: 8745400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The backbone structure of the thermophilic Thermoanaerobacter tengcongensis ribose binding protein is essentially identical to its mesophilic E. coli homolog.
    Cuneo MJ; Tian Y; Allert M; Hellinga HW
    BMC Struct Biol; 2008 Mar; 8():20. PubMed ID: 18373848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stepwise conversion of a binding protein to a fluorescent switch: application to Thermoanaerobacter tengcongensis ribose binding protein.
    Ha JH; Shinsky SA; Loh SN
    Biochemistry; 2013 Jan; 52(4):600-12. PubMed ID: 23302025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the role of highly conserved residues in triosephosphate isomerase--analysis of site specific mutants at positions 64 and 75 in the Plasmodial enzyme.
    Bandyopadhyay D; Murthy MR; Balaram H; Balaram P
    FEBS J; 2015 Oct; 282(20):3863-82. PubMed ID: 26206206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A metabolic bypass of the triosephosphate isomerase reaction.
    Desai KK; Miller BG
    Biochemistry; 2008 Aug; 47(31):7983-5. PubMed ID: 18620424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting the mechanism of the triosephosphate isomerase reaction: the role of the fully conserved glutamic acid 97 residue.
    Samanta M; Murthy MR; Balaram H; Balaram P
    Chembiochem; 2011 Aug; 12(12):1886-96. PubMed ID: 21671330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel method for enzyme design.
    Zhu X; Lai L
    J Comput Chem; 2009 Jan; 30(2):256-67. PubMed ID: 18615422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of glycerophosphodiester phosphodiesterase (GDPD) from Thermoanaerobacter tengcongensis, a metal ion-dependent enzyme: insight into the catalytic mechanism.
    Shi L; Liu JF; An XM; Liang DC
    Proteins; 2008 Jul; 72(1):280-8. PubMed ID: 18214974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of hinge sequence for loop function and catalytic activity in the reaction catalyzed by triosephosphate isomerase.
    Xiang J; Sun J; Sampson NS
    J Mol Biol; 2001 Apr; 307(4):1103-12. PubMed ID: 11286559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of computational methods to the study of enzyme catalysis by triose-phosphate isomerase and stabilities of variants of bacteriophage T4 lysozyme.
    Kollman PA; Daggett V; Dang LX
    Ciba Found Symp; 1991; 161():91-103; discussion 103-7. PubMed ID: 1814699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reverse engineering the (beta/alpha )8 barrel fold.
    Silverman JA; Balakrishnan R; Harbury PB
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3092-7. PubMed ID: 11248037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterisation of triose phosphate isomerase from the liver fluke Fasciola hepatica.
    Zinsser VL; Hoey EM; Trudgett A; Timson DJ
    Biochimie; 2013 Nov; 95(11):2182-9. PubMed ID: 23973283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of recombinant human triosephosphate isomerase at 2.8 A resolution. Triosephosphate isomerase-related human genetic disorders and comparison with the trypanosomal enzyme.
    Mande SC; Mainfroid V; Kalk KH; Goraj K; Martial JA; Hol WG
    Protein Sci; 1994 May; 3(5):810-21. PubMed ID: 8061610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative substrate affinities of wild-type and mutant forms of the Escherichia coli sugar transporter GalP determined by solid-state NMR.
    Patching SG; Psakis G; Baldwin SA; Baldwin J; Henderson PJ; Middleton DA
    Mol Membr Biol; 2008 Sep; 25(6-7):474-84. PubMed ID: 18798051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme-like proteins from an unselected library of designed amino acid sequences.
    Wei Y; Hecht MH
    Protein Eng Des Sel; 2004 Jan; 17(1):67-75. PubMed ID: 14985539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of human triosephosphate isomerase by improvement of the stability of individual alpha-helices in dimeric as well as monomeric forms of the protein.
    Mainfroid V; Mande SC; Hol WG; Martial JA; Goraj K
    Biochemistry; 1996 Apr; 35(13):4110-7. PubMed ID: 8672446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triose phosphate isomerase from the blood fluke Schistosoma mansoni: biochemical characterisation of a potential drug and vaccine target.
    Zinsser VL; Farnell E; Dunne DW; Timson DJ
    FEBS Lett; 2013 Nov; 587(21):3422-7. PubMed ID: 24070897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.