These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17196241)

  • 1. A simplified method for estimation of jarosite and acid-forming sulfates in acid mine wastes.
    Li J; Smart RS; Schumann RC; Gerson AR; Levay G
    Sci Total Environ; 2007 Feb; 373(1):391-403. PubMed ID: 17196241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid-base accounting assessment of mine wastes using the chromium reducible sulfur method.
    Schumann R; Stewart W; Miller S; Kawashima N; Li J; Smart R
    Sci Total Environ; 2012 May; 424():289-96. PubMed ID: 22444067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geochemistry and pH control of seepage from Ni-Cu rich mine tailings at Selebi Phikwe, Botswana.
    Sracek O; Kříbek B; Mihaljevič M; Ettler V; Vaněk A; Penížek V; Filip J; Veselovský F; Bagai ZB
    Environ Monit Assess; 2018 Jul; 190(8):482. PubMed ID: 30039179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method for distinctive estimation of stored acidity forms in acid mine wastes.
    Li J; Kawashima N; Fan R; Schumann RC; Gerson AR; Smart RS
    Environ Sci Technol; 2014 Oct; 48(19):11445-52. PubMed ID: 25178979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal variations of mineral character of acid-producing pyritic coastal sediments, Southeast Queensland, Australia.
    Preda M; Cox ME
    Sci Total Environ; 2004 Jun; 326(1-3):257-69. PubMed ID: 15142781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular precipitation of Pb by Shewanella putrefaciens CN32 during the reductive dissolution of Pb-jarosite.
    Smeaton CM; Fryer BJ; Weisener CG
    Environ Sci Technol; 2009 Nov; 43(21):8086-91. PubMed ID: 19924927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Jarosite as an indicator of water-limited chemical weathering on Mars.
    Madden ME; Bodnar RJ; Rimstidt JD
    Nature; 2004 Oct; 431(7010):821-3. PubMed ID: 15483605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cut-off net acid generation pH in predicting acid-forming potential in mine spoils.
    Liao B; Huang LN; Ye ZH; Lan CY; Shu WS
    J Environ Qual; 2007; 36(3):887-91. PubMed ID: 17485720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectivity assessment of an arsenic sequential extraction procedure for evaluating mobility in mine wastes.
    Drahota P; Grösslová Z; Kindlová H
    Anal Chim Acta; 2014 Aug; 839():34-43. PubMed ID: 25066716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Jarosite characteristics and its utilisation potentials.
    Pappu A; Saxena M; Asolekar SR
    Sci Total Environ; 2006 Apr; 359(1-3):232-43. PubMed ID: 15978656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper and arsenate co-sorption at the mineral-water interfaces of goethite and jarosite.
    Gräfe M; Beattie DA; Smith E; Skinner WM; Singh B
    J Colloid Interface Sci; 2008 Jun; 322(2):399-413. PubMed ID: 18423478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemistry and phase evolution during roasting of toxic thallium-bearing pyrite.
    Lopez-Arce P; Garcia-Guinea J; Garrido F
    Chemosphere; 2017 Aug; 181():447-460. PubMed ID: 28458220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ chemical fixation of arsenic-contaminated soils: an experimental study.
    Yang L; Donahoe RJ; Redwine JC
    Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy.
    Han H; Sun W; Hu Y; Jia B; Tang H
    J Hazard Mater; 2014 Aug; 278():49-54. PubMed ID: 24953935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ferric ions on the anaerobic bio-dissolution of jarosites by Acidithiobacillus ferrooxidans.
    Yang Y; Chen S; Wang B; Wen X; Li H; Zeng RJ
    Sci Total Environ; 2020 Mar; 710():136334. PubMed ID: 32050370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mineralogical control on arsenic release during sediment-water interaction in abandoned mine wastes from the Argentina Puna.
    Nieva NE; Borgnino L; Locati F; García MG
    Sci Total Environ; 2016 Apr; 550():1141-1151. PubMed ID: 26889947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid mine drainage formation and arsenic mobility under strongly acidic conditions: Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite.
    Tabelin CB; Corpuz RD; Igarashi T; Villacorte-Tabelin M; Alorro RD; Yoo K; Raval S; Ito M; Hiroyoshi N
    J Hazard Mater; 2020 Nov; 399():122844. PubMed ID: 32534389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ calcite formation in limestone-saturated water leaching of acid rock waste.
    Smart RS; Miller SD; Stewart WS; Rusdinar Y; Schumann RE; Kawashima N; Li J
    Sci Total Environ; 2010 Jul; 408(16):3392-402. PubMed ID: 20452647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of secondary products in arsenopyrite-bearing mine wastes: influence of cementation on arsenic attenuation.
    Murciego A; Álvarez-Ayuso E; Aldana-Martínez SC; Sanz-Arranz A; Medina-García J; Rull-Pérez F; Villar-Alonso P
    J Hazard Mater; 2019 Jul; 373():425-436. PubMed ID: 30939425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of waste deposit geometry on the mineralogical and geochemical composition of mine tailings.
    Stumbea D; Chicoș MM; Nica V
    J Hazard Mater; 2019 Apr; 368():496-505. PubMed ID: 30710778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.