These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 17196330)

  • 1. Break-up of oil-in-water emulsions by electrochemical techniques.
    Cañizares P; Martínez F; Lobato J; Rodrigo MA
    J Hazard Mater; 2007 Jun; 145(1-2):233-40. PubMed ID: 17196330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coagulation and electrocoagulation of oil-in-water emulsions.
    Cañizares P; Martínez F; Jiménez C; Sáez C; Rodrigo MA
    J Hazard Mater; 2008 Feb; 151(1):44-51. PubMed ID: 17583426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrocoagulation of cutting oil emulsions using aluminium plate electrodes.
    Bensadok K; Benammar S; Lapicque F; Nezzal G
    J Hazard Mater; 2008 Mar; 152(1):423-30. PubMed ID: 17706345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of oil removal from oily wastewater by electrocoagulation using response surface method.
    Tir M; Moulai-Mostefa N
    J Hazard Mater; 2008 Oct; 158(1):107-15. PubMed ID: 18313208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of motor oils, oily wastes and hydrocarbons from contaminated water by sorption on chrome shavings.
    Gammoun A; Tahiri S; Albizane A; Azzi M; Moros J; Garrigues S; de la Guardia M
    J Hazard Mater; 2007 Jun; 145(1-2):148-53. PubMed ID: 17157981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters.
    Cañizares P; Jiménez C; Martínez F; Rodrigo MA; Sáez C
    J Hazard Mater; 2009 Apr; 163(1):158-64. PubMed ID: 18674858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of COD from laundry wastewater by electrocoagulation/electroflotation.
    Wang CT; Chou WL; Kuo YM
    J Hazard Mater; 2009 May; 164(1):81-6. PubMed ID: 18768252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical removal of phenol from oil refinery wastewater.
    Abdelwahab O; Amin NK; El-Ashtoukhy ES
    J Hazard Mater; 2009 Apr; 163(2-3):711-6. PubMed ID: 18755537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of additives on the treatment of oil-in-water emulsions by vacuum evaporation.
    Gutiérrez G; Cambiella A; Benito JM; Pazos C; Coca J
    J Hazard Mater; 2007 Jun; 144(3):649-54. PubMed ID: 17321675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Destabilization of emulsions by natural minerals.
    Yuan S; Tong M; Wu G
    J Hazard Mater; 2011 Sep; 192(3):1882-5. PubMed ID: 21784583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of chemical compositions contributable to chemical oxygen demand (COD) of oilfield produced water.
    Lu J; Wang X; Shan B; Li X; Wang W
    Chemosphere; 2006 Jan; 62(2):322-31. PubMed ID: 15939457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical heterogeneous catalytic degradation of wastewater containing phenol.
    Jia B; Zhang D; Zhang AL; Zhou JT
    Ann N Y Acad Sci; 2008 Oct; 1140():376-82. PubMed ID: 18991937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocoagulation of simulated reactive dyebath effluent with aluminum and stainless steel electrodes.
    Arslan-Alaton I; Kabdaşli I; Vardar B; Tünay O
    J Hazard Mater; 2009 May; 164(2-3):1586-94. PubMed ID: 18849115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical treatment of deproteinated whey wastewater and optimization of treatment conditions with response surface methodology.
    Güven G; Perendeci A; Tanyolaç A
    J Hazard Mater; 2008 Aug; 157(1):69-78. PubMed ID: 18262350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury(II) removal from water by electrocoagulation using aluminium and iron electrodes.
    Nanseu-Njiki CP; Tchamango SR; Ngom PC; Darchen A; Ngameni E
    J Hazard Mater; 2009 Sep; 168(2-3):1430-6. PubMed ID: 19349114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid processes for the treatment of cattle-slaughterhouse wastewater using aluminum and iron electrodes.
    Tezcan Un U; Koparal AS; Bakir Oğütveren U
    J Hazard Mater; 2009 May; 164(2-3):580-6. PubMed ID: 18819748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocoagulation efficiency of the tannery effluent treatment using aluminium electrodes.
    Espinoza-Quiñones FR; Fornari MM; Módenes AN; Palácio SM; Trigueros DE; Borba FH; Kroumov AD
    Water Sci Technol; 2009; 60(8):2173-85. PubMed ID: 19844065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections.
    Kobya M; Bayramoglu M; Eyvaz M
    J Hazard Mater; 2007 Sep; 148(1-2):311-8. PubMed ID: 17368931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of a waste oil-in-water emulsion from a copper-rolling process by ultrafiltration and vacuum evaporation.
    Gutiérrez G; Lobo A; Benito JM; Coca J; Pazos C
    J Hazard Mater; 2011 Jan; 185(2-3):1569-74. PubMed ID: 21112152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using aluminum electrodes.
    Yildiz YS
    J Hazard Mater; 2008 May; 153(1-2):194-200. PubMed ID: 17875363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.