BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 17196416)

  • 1. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids.
    Shiba Y; Paradise EM; Kirby J; Ro DK; Keasling JD
    Metab Eng; 2007 Mar; 9(2):160-8. PubMed ID: 17196416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae.
    Kocharin K; Chen Y; Siewers V; Nielsen J
    AMB Express; 2012 Sep; 2(1):52. PubMed ID: 23009357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential of R. toruloides mevalonate pathway genes in increasing isoprenoid yields in S. cerevisiae: Evaluation of GGPPS and HMG-CoA reductase.
    Adusumilli SH; Dabburu GR; Kumar M; Arora P; Chattopadhyaya B; Behera D; Bachhawat AK
    Enzyme Microb Technol; 2024 Mar; 174():110374. PubMed ID: 38147781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-level biosynthesis of enantiopure germacrene D in yeast.
    Sharma S; Chaurasia S; Dinday S; Srivastava G; Singh A; Chanotiya CS; Ghosh S
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):50. PubMed ID: 38183482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multidimensional Optimization of
    Fan J; Zhang Y; Li W; Li Z; Zhang D; Mo Q; Cao M; Yuan J
    Biodes Res; 2024; 6():0026. PubMed ID: 38213763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism.
    Chen Y; Daviet L; Schalk M; Siewers V; Nielsen J
    Metab Eng; 2013 Jan; 15():48-54. PubMed ID: 23164578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains.
    Lian J; Si T; Nair NU; Zhao H
    Metab Eng; 2014 Jul; 24():139-49. PubMed ID: 24853351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae.
    Jakočiūnas T; Bonde I; Herrgård M; Harrison SJ; Kristensen M; Pedersen LE; Jensen MK; Keasling JD
    Metab Eng; 2015 Mar; 28():213-222. PubMed ID: 25638686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production.
    Özaydın B; Burd H; Lee TS; Keasling JD
    Metab Eng; 2013 Jan; 15():174-83. PubMed ID: 22918085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism.
    Krivoruchko A; Serrano-Amatriain C; Chen Y; Siewers V; Nielsen J
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1051-6. PubMed ID: 23760499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae.
    Tang X; Feng H; Chen WN
    Metab Eng; 2013 Mar; 16():95-102. PubMed ID: 23353549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode.
    Scalcinati G; Knuf C; Partow S; Chen Y; Maury J; Schalk M; Daviet L; Nielsen J; Siewers V
    Metab Eng; 2012 Mar; 14(2):91-103. PubMed ID: 22330799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation.
    van den Berg MA; de Jong-Gubbels P; Kortland CJ; van Dijken JP; Pronk JT; Steensma HY
    J Biol Chem; 1996 Nov; 271(46):28953-9. PubMed ID: 8910545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin.
    Westfall PJ; Pitera DJ; Lenihan JR; Eng D; Woolard FX; Regentin R; Horning T; Tsuruta H; Melis DJ; Owens A; Fickes S; Diola D; Benjamin KR; Keasling JD; Leavell MD; McPhee DJ; Renninger NS; Newman JD; Paddon CJ
    Proc Natl Acad Sci U S A; 2012 Jan; 109(3):E111-8. PubMed ID: 22247290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing Terpene yield from sugars via novel routes to 1-deoxy-d-xylulose 5-phosphate.
    Kirby J; Nishimoto M; Chow RW; Baidoo EE; Wang G; Martin J; Schackwitz W; Chan R; Fortman JL; Keasling JD
    Appl Environ Microbiol; 2015 Jan; 81(1):130-8. PubMed ID: 25326299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofuels. Engineering alcohol tolerance in yeast.
    Lam FH; Ghaderi A; Fink GR; Stephanopoulos G
    Science; 2014 Oct; 346(6205):71-5. PubMed ID: 25278607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals.
    Runguphan W; Keasling JD
    Metab Eng; 2014 Jan; 21():103-13. PubMed ID: 23899824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.
    Kozak BU; van Rossum HM; Luttik MA; Akeroyd M; Benjamin KR; Wu L; de Vries S; Daran JM; Pronk JT; van Maris AJ
    mBio; 2014 Oct; 5(5):e01696-14. PubMed ID: 25336454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae.
    Ronda C; Maury J; Jakočiunas T; Jacobsen SA; Germann SM; Harrison SJ; Borodina I; Keasling JD; Jensen MK; Nielsen AT
    Microb Cell Fact; 2015 Jul; 14():97. PubMed ID: 26148499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production.
    Alonso-Gutierrez J; Chan R; Batth TS; Adams PD; Keasling JD; Petzold CJ; Lee TS
    Metab Eng; 2013 Sep; 19():33-41. PubMed ID: 23727191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.