BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17196600)

  • 1. Optimizing refolding and recovery of active recombinant Bacillus halodurans xylanase in polymer-salt aqueous two-phase system using surface response analysis.
    Rahimpour F; Mamo G; Feyzi F; Maghsoudi S; Hatti-Kaul R
    J Chromatogr A; 2007 Feb; 1141(1):32-40. PubMed ID: 17196600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification of plasmid DNA with polymer-salt aqueous two-phase system: optimization using response surface methodology.
    Rahimpour F; Feyzi F; Maghsoudi S; Hatti-Kaul R
    Biotechnol Bioeng; 2006 Nov; 95(4):627-37. PubMed ID: 16615144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response surface methodology optimization of partitioning of xylanase form Aspergillus Niger by metal affinity polymer-salt aqueous two-phase systems.
    Fakhari MA; Rahimpour F; Taran M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Sep; 1063():1-10. PubMed ID: 28823875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation.
    Mamo G; Thunnissen M; Hatti-Kaul R; Mattiasson B
    Biochimie; 2009 Sep; 91(9):1187-96. PubMed ID: 19567261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xylanase recovery. Effect of extraction conditions on the aqueous two-phase system using experimental design.
    Costa SA; Pessoa A; Roberto IC
    Appl Biochem Biotechnol; 1998; 70-72():629-39. PubMed ID: 18576027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of Neocallimastix patriciarum xylanase on artificial oil bodies and statistical optimization of enzyme activity.
    Hung YJ; Peng CC; Tzen JT; Chen MJ; Liu JR
    Bioresour Technol; 2008 Dec; 99(18):8662-6. PubMed ID: 18495476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extractive cultivation of xylanase by Penicillium janthinellum in a poly(ethylene glycol)/cashew-nut tree gum aqueous two-phase system.
    Oliveira LA; Barros Neto B; Porto AL; Tambourgi EB
    Biotechnol Prog; 2004; 20(6):1880-4. PubMed ID: 15575727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequencing and expression of the xylanase gene 2 from Trichoderma reesei Rut C-30 and characterization of the recombinant enzyme and its activity on xylan.
    Jun H; Bing Y; Keying Z; Xuemei D; Daiwen C
    J Mol Microbiol Biotechnol; 2009; 17(3):101-9. PubMed ID: 19556747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational analysis of responsible dipeptides for optimum pH in G/11 xylanase.
    Liu L; Li X; Li X; Shao W
    Biochem Biophys Res Commun; 2004 Aug; 321(2):391-6. PubMed ID: 15358189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of recombinant phenylalanine dehydrogenase by partitioning in aqueous two-phase systems.
    Mohamadi HS; Omidinia E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Jul; 854(1-2):273-8. PubMed ID: 17537685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extractive cultivation of recombinant Escherichia coli using aqueous two phase systems for production and separation of extracellular xylanase.
    Kulkarni N; Vaidya A; Rao M
    Biochem Biophys Res Commun; 1999 Feb; 255(2):274-8. PubMed ID: 10049698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of central composite design to the optimisation of aqueous two-phase extraction of human antibodies.
    Rosa PA; Azevedo AM; Aires-Barros MR
    J Chromatogr A; 2007 Feb; 1141(1):50-60. PubMed ID: 17196214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of fibrinolytic enzyme production by Bacillus subtilis DC-2 in aqueous two-phase system (poly-ethylene glycol 4000 and sodium sulfate).
    Ashipala OK; He Q
    Bioresour Technol; 2008 Jul; 99(10):4112-9. PubMed ID: 17983741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of chromatography and polymer/salt aqueous two-phase processes for downstream processing development of recombinant phenylalanine dehydrogenase.
    Omidinia E; Shahbaz Mohamadi H; Dinarvand R; Taherkhani HA
    Bioprocess Biosyst Eng; 2010 Mar; 33(3):317-29. PubMed ID: 19495799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, characterization, and expression of xylanase A gene from Paenibacillus sp. DG-22 in Escherichia coli.
    Lee TH; Lim PO; Lee YE
    J Microbiol Biotechnol; 2007 Jan; 17(1):29-36. PubMed ID: 18051350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction and rationalization of the pH dependence of the activity and stability of family 11 xylanases.
    Kongsted J; Ryde U; Wydra J; Jensen JH
    Biochemistry; 2007 Nov; 46(47):13581-92. PubMed ID: 17960918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly thermo-halo-alkali-stable β-1,4-endoxylanase from a novel polyextremophilic strain of Bacillus halodurans.
    Kumar V; Syal P; Satyanarayana T
    Bioprocess Biosyst Eng; 2013 May; 36(5):555-65. PubMed ID: 22932960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of conditions for acid protease partitioning and purification in aqueous two-phase systems using response surface methodology.
    Pericin DM; Madarev-Popović SZ; Radulović-Popović LM
    Biotechnol Lett; 2009 Jan; 31(1):43-7. PubMed ID: 18773147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical optimization of thermo-tolerant xylanase activity from Amazon isolated Bacillus circulans on solid-state cultivation.
    Heck JX; Flôres SH; Hertz PF; Ayub MA
    Bioresour Technol; 2006 Oct; 97(15):1902-6. PubMed ID: 16216495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and identification of two xylanase-producing extremely alkali-tolerant strains of Bacillus halodurans from Turpan in China.
    Yi X; Xie ZJ; Deng AH; Wang N; Erkin R
    Wei Sheng Wu Xue Bao; 2006 Dec; 46(6):951-5. PubMed ID: 17302160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.