These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 17196618)

  • 1. Expression of GATA-1 in a non-hematopoietic cell line induces beta-globin locus control region chromatin structure remodeling and an erythroid pattern of gene expression.
    Layon ME; Ackley CJ; West RJ; Lowrey CH
    J Mol Biol; 2007 Feb; 366(3):737-44. PubMed ID: 17196618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta-globin active chromatin Hub formation in differentiating erythroid cells and in p45 NF-E2 knock-out mice.
    Kooren J; Palstra RJ; Klous P; Splinter E; von Lindern M; Grosveld F; de Laat W
    J Biol Chem; 2007 Jun; 282(22):16544-52. PubMed ID: 17428799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The distinctive roles of erythroid specific activator GATA-1 and NF-E2 in transcription of the human fetal γ-globin genes.
    Woon Kim Y; Kim S; Geun Kim C; Kim A
    Nucleic Acids Res; 2011 Sep; 39(16):6944-55. PubMed ID: 21609963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erythroid activator NF-E2, TAL1 and KLF1 play roles in forming the LCR HSs in the human adult β-globin locus.
    Kim YW; Yun WJ; Kim A
    Int J Biochem Cell Biol; 2016 Jun; 75():45-52. PubMed ID: 27026582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible interaction between B1 retrotransposon-containing sequences and β(major) globin gene transcriptional activation during MEL cell erythroid differentiation.
    Vizirianakis IS; Tezias SS; Amanatiadou EP; Tsiftsoglou AS
    Cell Biol Int; 2012 Jan; 36(1):47-55. PubMed ID: 21970403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythroid specific activator GATA-1-dependent interactions between CTCF sites around the β-globin locus.
    Kang Y; Kim YW; Kang J; Yun WJ; Kim A
    Biochim Biophys Acta Gene Regul Mech; 2017 Apr; 1860(4):416-426. PubMed ID: 28161276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of alpha-globin locus chromatin structure and gene expression during erythroid differentiation of human CD34(+) cells in culture.
    Mahajan MC; Karmakar S; Newburger PE; Krause DS; Weissman SM
    Exp Hematol; 2009 Oct; 37(10):1143-1156.e3. PubMed ID: 19607874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin-binding in vivo of the erythroid kruppel-like factor, EKLF, in the murine globin loci.
    Shyu YC; Wen SC; Lee TL; Chen X; Hsu CT; Chen H; Chen RL; Hwang JL; Shen CK
    Cell Res; 2006 Apr; 16(4):347-55. PubMed ID: 16617330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved elements containing NF-E2 and tandem GATA binding sites are required for erythroid-specific chromatin structure reorganization within the human beta-globin locus control region.
    Pomerantz O; Goodwin AJ; Joyce T; Lowrey CH
    Nucleic Acids Res; 1998 Dec; 26(24):5684-91. PubMed ID: 9838000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis and mapping of DNase I hypersensitivity of HS5 of the beta-globin locus control region.
    Li Q; Zhang M; Duan Z; Stamatoyannopoulos G
    Genomics; 1999 Oct; 61(2):183-93. PubMed ID: 10534403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter.
    Sawado T; Igarashi K; Groudine M
    Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10226-31. PubMed ID: 11517325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NF-E2 and GATA binding motifs are required for the formation of DNase I hypersensitive site 4 of the human beta-globin locus control region.
    Stamatoyannopoulos JA; Goodwin A; Joyce T; Lowrey CH
    EMBO J; 1995 Jan; 14(1):106-16. PubMed ID: 7828582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. KLF1 stabilizes GATA-1 and TAL1 occupancy in the human β-globin locus.
    Kang Y; Kim YW; Yun J; Shin J; Kim A
    Biochim Biophys Acta; 2015 Mar; 1849(3):282-9. PubMed ID: 25528728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of transcriptional activator GATA-1 at human beta-globin HS2.
    Cho Y; Song SH; Lee JJ; Choi N; Kim CG; Dean A; Kim A
    Nucleic Acids Res; 2008 Aug; 36(14):4521-8. PubMed ID: 18586828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The binding of the ubiquitous transcription factor Sp1 at the locus control region represses the expression of beta-like globin genes.
    Feng D; Kan YW
    Proc Natl Acad Sci U S A; 2005 Jul; 102(28):9896-900. PubMed ID: 15998736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNase I hypersensitivity and epsilon-globin transcriptional enhancement are separable in locus control region (LCR) HS1 mutant human beta-globin YAC transgenic mice.
    Shimotsuma M; Okamura E; Matsuzaki H; Fukamizu A; Tanimoto K
    J Biol Chem; 2010 May; 285(19):14495-503. PubMed ID: 20231293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sumoylation of p45/NF-E2: nuclear positioning and transcriptional activation of the mammalian beta-like globin gene locus.
    Shyu YC; Lee TL; Ting CY; Wen SC; Hsieh LJ; Li YC; Hwang JL; Lin CC; Shen CK
    Mol Cell Biol; 2005 Dec; 25(23):10365-78. PubMed ID: 16287851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NF-E2 disrupts chromatin structure at human beta-globin locus control region hypersensitive site 2 in vitro.
    Armstrong JA; Emerson BM
    Mol Cell Biol; 1996 Oct; 16(10):5634-44. PubMed ID: 8816476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Essential role of NF-E2 in remodeling of chromatin structure and transcriptional activation of the epsilon-globin gene in vivo by 5' hypersensitive site 2 of the beta-globin locus control region.
    Gong QH; McDowell JC; Dean A
    Mol Cell Biol; 1996 Nov; 16(11):6055-64. PubMed ID: 8887635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone acetylation contributes to chromatin looping between the locus control region and globin gene by influencing hypersensitive site formation.
    Kim YW; Kim A
    Biochim Biophys Acta; 2013 Sep; 1829(9):963-9. PubMed ID: 23607989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.