These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 17196680)

  • 1. Regulation of gene transcription by mitogen-activated protein kinase signaling pathways.
    Whitmarsh AJ
    Biochim Biophys Acta; 2007 Aug; 1773(8):1285-98. PubMed ID: 17196680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation by the MAP kinase signaling cascades.
    Yang SH; Sharrocks AD; Whitmarsh AJ
    Gene; 2003 Nov; 320():3-21. PubMed ID: 14597384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular signal-regulated kinase mitogen-activated protein kinase signaling initiates a dynamic interplay between sumoylation and ubiquitination to regulate the activity of the transcriptional activator PEA3.
    Guo B; Sharrocks AD
    Mol Cell Biol; 2009 Jun; 29(11):3204-18. PubMed ID: 19307308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MAP kinases as structural adaptors and enzymatic activators in transcription complexes.
    Edmunds JW; Mahadevan LC
    J Cell Sci; 2004 Aug; 117(Pt 17):3715-23. PubMed ID: 15286173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal transduction and the Ets family of transcription factors.
    Yordy JS; Muise-Helmericks RC
    Oncogene; 2000 Dec; 19(55):6503-13. PubMed ID: 11175366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity.
    Bardwell AJ; Abdollahi M; Bardwell L
    Biochem J; 2003 Mar; 370(Pt 3):1077-85. PubMed ID: 12529172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Cell surface protein Ecm33 is involved in negative feedback regulation of MAP kinase signalling and development of the in vivo real-time monitoring of MAP kinase signalling].
    Takada H
    Yakugaku Zasshi; 2011; 131(8):1195-200. PubMed ID: 21804323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay of the SUMO and MAP kinase pathways.
    Yang SH; Sharrocks AD
    Ernst Schering Res Found Workshop; 2006; (57):193-209. PubMed ID: 16568956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitogen-activated protein kinase (MAPK)-regulated interactions between Osterix and Runx2 are critical for the transcriptional osteogenic program.
    Artigas N; Ureña C; Rodríguez-Carballo E; Rosa JL; Ventura F
    J Biol Chem; 2014 Sep; 289(39):27105-27117. PubMed ID: 25122769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ubiquitin chains in the ladder of MAPK signaling.
    Laine A; Ronai Z
    Sci STKE; 2005 Apr; 2005(281):re5. PubMed ID: 15855411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How the Smads regulate transcription.
    Ross S; Hill CS
    Int J Biochem Cell Biol; 2008; 40(3):383-408. PubMed ID: 18061509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein kinase A and mitogen-activated protein kinase pathways antagonistically regulate fission yeast fbp1 transcription by employing different modes of action at two upstream activation sites.
    Neely LA; Hoffman CS
    Mol Cell Biol; 2000 Sep; 20(17):6426-34. PubMed ID: 10938120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MAP kinase and pain.
    Ji RR; Gereau RW; Malcangio M; Strichartz GR
    Brain Res Rev; 2009 Apr; 60(1):135-48. PubMed ID: 19150373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNF2 is the target for phosphorylation by the p38 MAPK and ERK signaling pathways.
    Rao PS; Satelli A; Zhang S; Srivastava SK; Srivenugopal KS; Rao US
    Proteomics; 2009 May; 9(10):2776-87. PubMed ID: 19405034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-transcriptional regulation of the Ras-ERK/MAPK signaling pathway.
    Whelan JT; Hollis SE; Cha DS; Asch AS; Lee MH
    J Cell Physiol; 2012 Mar; 227(3):1235-41. PubMed ID: 21688267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Both mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinases (ERK) 1/2 and phosphatidylinositide-3-OH kinase (PI3K)/Akt pathways regulate activation of E-twenty-six (ETS)-like transcription factor 1 (Elk-1) in U138 glioblastoma cells.
    Mut M; Lule S; Demir O; Kurnaz IA; Vural I
    Int J Biochem Cell Biol; 2012 Feb; 44(2):302-10. PubMed ID: 22085529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA aptamers as pathway-specific MAP kinase inhibitors.
    Seiwert SD; Stines Nahreini T; Aigner S; Ahn NG; Uhlenbeck OC
    Chem Biol; 2000 Nov; 7(11):833-43. PubMed ID: 11094337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NFAT targets signaling molecules to gene promoters in pancreatic β-cells.
    Lawrence MC; Borenstein-Auerbach N; McGlynn K; Kunnathodi F; Shahbazov R; Syed I; Kanak M; Takita M; Levy MF; Naziruddin B
    Mol Endocrinol; 2015 Feb; 29(2):274-88. PubMed ID: 25496032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs.
    Molkentin JD
    Cardiovasc Res; 2004 Aug; 63(3):467-75. PubMed ID: 15276472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MAP kinases and the control of nuclear events.
    Turjanski AG; Vaqué JP; Gutkind JS
    Oncogene; 2007 May; 26(22):3240-53. PubMed ID: 17496919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.