BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 17196817)

  • 1. Evaluation of thermally modified Grevillea robusta heartwood as an alternative to shortage of wood resource in Kenya: Characterisation of physicochemical properties and improvement of bio-resistance.
    Mburu F; Dumarçay S; Huber F; Petrissans M; Gérardin P
    Bioresour Technol; 2007 Dec; 98(18):3478-86. PubMed ID: 17196817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon-thirteen cross-polarization magic angle spinning nuclear magnetic resonance and Fourier transform infrared studies of thermally modified wood exposed to brown and soft rot fungi.
    Sivonen H; Nuopponen M; Maunu SL; Sundholm F; Vuorinen T
    Appl Spectrosc; 2003 Mar; 57(3):266-73. PubMed ID: 14658617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effect of heartwood extractives and quaternary ammonium compounds on termite resistance of treated wood.
    Hwang WJ; Kartal SN; Yoshimura T; Imamura Y
    Pest Manag Sci; 2007 Jan; 63(1):90-5. PubMed ID: 17054087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Biodegradation of Venezuelan woods in field stake tests in the western lowlands].
    Encinas O
    Acta Cient Venez; 2000; 51(1):39-44. PubMed ID: 10974706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Qualitative and quantitative changes of beech wood degraded by wood-rotting basidiomycetes monitored by Fourier transform infrared spectroscopic methods and multivariate data analysis.
    Fackler K; Schwanninger M; Gradinger C; Hinterstoisser B; Messner K
    FEMS Microbiol Lett; 2007 Jun; 271(2):162-9. PubMed ID: 17466029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fungicidal values of bio-oils and their lignin-rich fractions obtained from wood/bark fast pyrolysis.
    Mohan D; Shi J; Nicholas DD; Pittman CU; Steele PH; Cooper JE
    Chemosphere; 2008 Mar; 71(3):456-65. PubMed ID: 18093634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the Chemical Composition and Decay Resistance of Thermally-Modified Hevea brasiliensis Wood.
    Severo ET; Calonego FW; Sansígolo CA; Bond B
    PLoS One; 2016; 11(3):e0151353. PubMed ID: 26986200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary evaluation of fungicidal and termiticidal activities of filtrates from biomass slurry fuel production.
    Kartal SN; Imamura Y; Tsuchiya F; Ohsato K
    Bioresour Technol; 2004 Oct; 95(1):41-7. PubMed ID: 15207293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decay resistance of thermally-modified Eucalyptus grandis wood at 140 degrees C, 160 degrees C, 180 degrees C, 200 degrees C and 220 degrees C.
    Calonego FW; Severo ET; Furtado EL
    Bioresour Technol; 2010 Dec; 101(23):9391-4. PubMed ID: 20655200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The influence of oil heat treatment on wood decay resistance by Fourier infrared spectrum analysis].
    Wang YM; Ma SL; Feng LQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Mar; 34(3):660-3. PubMed ID: 25208386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-temperature thermal treatment of wood using a multiscale computational model: application to wood poles.
    Younsi R; Kocaefe D; Poncsak S; Kocaefe Y; Gastonguay L
    Bioresour Technol; 2010 Jun; 101(12):4630-8. PubMed ID: 20171094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of urea modification and heat treatment on the process of NO2 removal by wood-based activated carbon.
    Bashkova S; Bandosz TJ
    J Colloid Interface Sci; 2009 May; 333(1):97-103. PubMed ID: 19217629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. THERMAL MODIFICATION OF RUBBERWOOD TO INCREASE ITS RESISTANCE AGAINST ASIAN SUBTERRANEAN TERMITES.
    Tarasin M
    Commun Agric Appl Biol Sci; 2014; 79(2):279-82. PubMed ID: 26084107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photodegradation of thermally modified wood.
    Srinivas K; Pandey KK
    J Photochem Photobiol B; 2012 Dec; 117():140-5. PubMed ID: 23123593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of effectiveness of wood decay fungi maintained by annual subculture on agar and stored in sterile water for 18 years.
    Richter DL; Kangas LC; Smith JK; Laks PE
    Can J Microbiol; 2010 Mar; 56(3):268-71. PubMed ID: 20453914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Durability of five native Argentine wood species of the genera Prosopis and Acacia decayed by rot fungi and its relationship with extractive content.
    Pometti CL; Palanti S; Pizzo B; Charpentier JP; Boizot N; Resio C; Saidman BO
    Biodegradation; 2010 Sep; 21(5):753-60. PubMed ID: 20195704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of fast pyrolysis bio-oils produced from pretreated pine wood.
    Hassan el-BM; Steele PH; Ingram L
    Appl Biochem Biotechnol; 2009 May; 154(1-3):3-13. PubMed ID: 19050831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FTIR and color change of the modified wood as a result of artificial light irradiation.
    Rosu D; Teaca CA; Bodirlau R; Rosu L
    J Photochem Photobiol B; 2010 Jun; 99(3):144-9. PubMed ID: 20392648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood.
    Korkut DS; Guller B
    Bioresour Technol; 2008 May; 99(8):2846-51. PubMed ID: 17698357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of wood with isopropyl glycidyl ether and its effects on decay resistance and light stability.
    Chang HT; Chang ST
    Bioresour Technol; 2006 Jul; 97(11):1265-71. PubMed ID: 16039118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.