These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 17196934)
1. Mutations of acetylcholinesterase1 contribute to prothiofos-resistance in Plutella xylostella (L.). Lee DW; Choi JY; Kim WT; Je YH; Song JT; Chung BK; Boo KS; Koh YH Biochem Biophys Res Commun; 2007 Feb; 353(3):591-7. PubMed ID: 17196934 [TBL] [Abstract][Full Text] [Related]
2. Molecular characterization of two acetylcholinesterase genes from the oriental tobacco budworm, Helicoverpa assulta (Guenée). Lee DW; Kim SS; Shin SW; Kim WT; Boo KS Biochim Biophys Acta; 2006 Feb; 1760(2):125-33. PubMed ID: 16352398 [TBL] [Abstract][Full Text] [Related]
3. Amino acid substitutions and intron polymorphism of acetylcholinesterase1 associated with mevinphos resistance in diamondback moth, Plutella xylostella (L.). Yeh SC; Lin CL; Chang C; Feng HT; Dai SM Pestic Biochem Physiol; 2014 Jun; 112():7-12. PubMed ID: 24974111 [TBL] [Abstract][Full Text] [Related]
4. Insecticide-resistance mechanism of Plutella xylostella (L.) associated with amino acid substitutions in acetylcholinesterase-1: A molecular docking and molecular dynamics investigation. Sindhu T; Venkatesan T; Prabhu D; Jeyakanthan J; Gracy GR; Jalali SK; Rai A Comput Biol Chem; 2018 Dec; 77():240-250. PubMed ID: 30368112 [TBL] [Abstract][Full Text] [Related]
5. Baculovirus expression of BmAChE3, a cDNA encoding an acetylcholinesterase of Boophilus microplus (Acari: Ixodidae). Temeyer KB; Pruett JH; Untalan PM; Chen AC J Med Entomol; 2006 Jul; 43(4):707-12. PubMed ID: 16892628 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the Fifth Putative Acetylcholinesterase in the Wolf Spider, Pardosa pseudoannulata. Meng X; Xu X; Bao H; Wang J; Liu Z Molecules; 2017 Jul; 22(7):. PubMed ID: 28696352 [No Abstract] [Full Text] [Related]
7. Duplication of acetylcholinesterase gene in diamondback moth strains with different sensitivities to acephate. Sonoda S; Shi X; Song D; Liang P; Gao X; Zhang Y; Li J; Liu Y; Li M; Matsumura M; Sanada-Morimura S; Minakuchi C; Tanaka T; Miyata T Insect Biochem Mol Biol; 2014 May; 48():83-90. PubMed ID: 24632376 [TBL] [Abstract][Full Text] [Related]
8. Baculovirus expression, biochemical characterization and organophosphate sensitivity of rBmAChE1, rBmAChE2, and rBmAChE3 of Rhipicephalus (Boophilus) microplus. Temeyer KB; Pruett JH; Olafson PU Vet Parasitol; 2010 Aug; 172(1-2):114-21. PubMed ID: 20451328 [TBL] [Abstract][Full Text] [Related]
9. Cloning of Two Acetylcholinesterase Genes and Analysis of Point Mutations Putatively Associated with Triazophos Resistance in Chilo auricilius (Lepidoptera: Pyralidae). Luo GH; Li XH; Zhang ZC; Liu BS; Huang SJ; Fang JC J Econ Entomol; 2015 Jun; 108(3):1289-97. PubMed ID: 26470257 [TBL] [Abstract][Full Text] [Related]
10. Determinants of substrate specificity of a second non-neuronal secreted acetylcholinesterase from the parasitic nematode Nippostrongylus brasiliensis. Hussein AS; Smith AM; Chacón MR; Selkirk ME Eur J Biochem; 2000 Apr; 267(8):2276-82. PubMed ID: 10759851 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of mechanisms of azinphos-methyl resistance in the codling moth Cydia pomonella (L.). Reuveny H; Cohen E Arch Insect Biochem Physiol; 2004 Oct; 57(2):92-100. PubMed ID: 15378568 [TBL] [Abstract][Full Text] [Related]
12. Comparative studies of acetylcholinesterase purified from three field populations of Liposcelis entomophila (enderlein) (psocoptera: liposcelididae). Xiao LS; Dou W; Li Y; Wang JJ Arch Insect Biochem Physiol; 2010 Nov; 75(3):158-73. PubMed ID: 20824823 [TBL] [Abstract][Full Text] [Related]
13. Evidence for a noncholinergic function of acetylcholinesterase during development of chicken retina as shown by fasciculin. Blasina MF; Faria AC; Gardino PF; Hokoc JN; Almeida OM; de Mello FG; Arruti C; Dajas F Cell Tissue Res; 2000 Feb; 299(2):173-84. PubMed ID: 10741458 [TBL] [Abstract][Full Text] [Related]
14. Cholinesterase activity in Gammarus pulex (Crustacea Amphipoda): characterization and effects of chlorpyrifos. Xuereb B; Noury P; Felten V; Garric J; Geffard O Toxicology; 2007 Jul; 236(3):178-89. PubMed ID: 17532548 [TBL] [Abstract][Full Text] [Related]
15. Mutations in acetylcholinesterase genes of Rhopalosiphum padi resistant to organophosphate and carbamate insecticides. Chen MH; Han ZJ; Qiao XF; Qu MJ Genome; 2007 Feb; 50(2):172-9. PubMed ID: 17546082 [TBL] [Abstract][Full Text] [Related]
17. Recovery of acetylcholinesterase activity in the common carp (Cyprinus carpio L.) after inhibition by organophosphate and carbamate compounds. Dembélé K; Haubruge E; Gaspar C Bull Environ Contam Toxicol; 1999 Jun; 62(6):731-42. PubMed ID: 10353999 [No Abstract] [Full Text] [Related]
18. Acetylcholinesterase mutation in an insecticide-resistant population of the codling moth Cydia pomonella (L.). Cassanelli S; Reyes M; Rault M; Carlo Manicardi G; Sauphanor B Insect Biochem Mol Biol; 2006 Aug; 36(8):642-53. PubMed ID: 16876707 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the nature of rat retinal acetylcholinesterase using a specific substrate and a specific inhibitor. Sastry BV; Singh G; Loo P; Janson VE J Ocul Pharmacol Ther; 1995; 11(3):401-9. PubMed ID: 8590272 [TBL] [Abstract][Full Text] [Related]
20. Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofos-susceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism towards entomopathogenic fungi and host insect nutrition. Indiragandhi P; Anandham R; Madhaiyan M; Poonguzhali S; Kim GH; Saravanan VS; Sa T J Appl Microbiol; 2007 Dec; 103(6):2664-75. PubMed ID: 17973916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]