These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 17196968)

  • 1. Tissue strain amplification at the osteocyte lacuna: a microstructural finite element analysis.
    Bonivtch AR; Bonewald LF; Nicolella DP
    J Biomech; 2007; 40(10):2199-206. PubMed ID: 17196968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteocyte lacunar strain determination using multiscale finite element analysis.
    Kola SK; Begonia MT; Tiede-Lewis LM; Laughrey LE; Dallas SL; Johnson ML; Ganesh T
    Bone Rep; 2020 Jun; 12():100277. PubMed ID: 32478144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the Role of Canalicular Morphology and Perilacunar Region Properties on Local Mechanical Environment of Lacunar-Canalicular Network Using Finite Element Modeling.
    Sang W; Ural A
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36629002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying how altered lacunar morphology and perilacunar tissue properties influence local mechanical environment of osteocyte lacunae using finite element modeling.
    Sang W; Ural A
    J Mech Behav Biomed Mater; 2022 Nov; 135():105433. PubMed ID: 36099785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteocyte lacunae tissue strain in cortical bone.
    Nicolella DP; Moravits DE; Gale AM; Bonewald LF; Lankford J
    J Biomech; 2006; 39(9):1735-43. PubMed ID: 15993413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of local cellular deformation in bone--influence of microstructure dimensions.
    Apostolopoulos CA; Deligianni DD
    J Musculoskelet Neuronal Interact; 2009; 9(2):99-108. PubMed ID: 19516085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilevel finite element modeling for the prediction of local cellular deformation in bone.
    Deligianni DD; Apostolopoulos CA
    Biomech Model Mechanobiol; 2008 Apr; 7(2):151-9. PubMed ID: 17431696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of osteoporosis treatment agents on the cortical bone osteocyte microenvironment in adult estrogen-deficient, osteopenic rats.
    Stern AR; Yao X; Wang Y; Berhe A; Dallas M; Johnson ML; Yao W; Kimmel DB; Lane NE
    Bone Rep; 2018 Jun; 8():115-124. PubMed ID: 29955630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system.
    Ganesh T; Laughrey LE; Niroobakhsh M; Lara-Castillo N
    Bone; 2020 Aug; 137():115328. PubMed ID: 32201360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perilacunar bone tissue exhibits sub-micrometer modulus gradation which depends on the recency of osteocyte bone formation in both young adult and early-old-age female C57Bl/6 mice.
    Rux CJ; Vahidi G; Darabi A; Cox LM; Heveran CM
    Bone; 2022 Apr; 157():116327. PubMed ID: 35026452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation of collagen at the osteocyte lacunae in human secondary osteons.
    Ascenzi MG; Gill J; Lomovtsev A
    J Biomech; 2008 Dec; 41(16):3426-35. PubMed ID: 19013574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain amplification analysis of an osteocyte under static and cyclic loading: a finite element study.
    Wang L; Dong J; Xian CJ
    Biomed Res Int; 2015; 2015():376474. PubMed ID: 25664319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement and estimation of osteocyte mechanical strain.
    Stern AR; Nicolella DP
    Bone; 2013 Jun; 54(2):191-5. PubMed ID: 23369990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteocytes and the bone lacunar-canalicular system: Insights into bone biology and skeletal function using bone tissue microstructure.
    Main RP
    Int J Paleopathol; 2017 Sep; 18():44-46. PubMed ID: 28888391
    [No Abstract]   [Full Text] [Related]  

  • 15. Micromechanical modelling of cortical bone.
    Mullins LP; McGarry JP; Bruzzi MS; McHugh PE
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):159-69. PubMed ID: 17558645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchrotron X-ray phase nano-tomography-based analysis of the lacunar-canalicular network morphology and its relation to the strains experienced by osteocytes in situ as predicted by case-specific finite element analysis.
    Varga P; Hesse B; Langer M; Schrof S; Männicke N; Suhonen H; Pacureanu A; Pahr D; Peyrin F; Raum K
    Biomech Model Mechanobiol; 2015 Apr; 14(2):267-82. PubMed ID: 25011566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microdamage and osteocyte-lacuna strain in bone: a microstructural finite element analysis.
    Prendergast PJ; Huiskes R
    J Biomech Eng; 1996 May; 118(2):240-6. PubMed ID: 8738790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disrupted osteocyte connectivity and pericellular fluid flow in bone with aging and defective TGF-β signaling.
    Schurman CA; Verbruggen SW; Alliston T
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34161267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PTH signaling mediates perilacunar remodeling during exercise.
    Gardinier JD; Al-Omaishi S; Morris MD; Kohn DH
    Matrix Biol; 2016; 52-54():162-175. PubMed ID: 26924474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic pathways of the fossil dinosaur bones. Part V. Morphological differentiation of osteocyte lacunae and bone canaliculi and their significance in the system of extracellular communication.
    Pawlicki R
    Folia Histochem Cytobiol; 1985; 23(3):165-74. PubMed ID: 4065383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.