These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 17196968)

  • 41. Effects of loading frequency on the functional adaptation of trabeculae predicted by bone remodeling simulation.
    Kameo Y; Adachi T; Hojo M
    J Mech Behav Biomed Mater; 2011 Aug; 4(6):900-8. PubMed ID: 21616471
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-resolution image-based simulation reveals membrane strain concentration on osteocyte processes caused by tethering elements.
    Yokoyama Y; Kameo Y; Kamioka H; Adachi T
    Biomech Model Mechanobiol; 2021 Dec; 20(6):2353-2360. PubMed ID: 34471950
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessment of Osteocytes: Techniques for Studying Morphological and Molecular Changes Associated with Perilacunar/Canalicular Remodeling of the Bone Matrix.
    Dole NS; Yee CS; Schurman CA; Dallas SL; Alliston T
    Methods Mol Biol; 2021; 2230():303-323. PubMed ID: 33197021
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strain amplification in the bone mechanosensory system.
    Cowin SC; Weinbaum S
    Am J Med Sci; 1998 Sep; 316(3):184-8. PubMed ID: 9749560
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading.
    Colopy SA; Benz-Dean J; Barrett JG; Sample SJ; Lu Y; Danova NA; Kalscheur VL; Vanderby R; Markel MD; Muir P
    Bone; 2004 Oct; 35(4):881-91. PubMed ID: 15454095
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Methodological assessment of acid-etching for visualizing the osteocyte lacunar-canalicular networks using scanning electron microscopy.
    Kubek DJ; Gattone VH; Allen MR
    Microsc Res Tech; 2010 Mar; 73(3):182-6. PubMed ID: 19725069
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A finite element dual porosity approach to model deformation-induced fluid flow in cortical bone.
    Fornells P; García-Aznar JM; Doblaré M
    Ann Biomed Eng; 2007 Oct; 35(10):1687-98. PubMed ID: 17616819
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigating Osteocytic Perilacunar/Canalicular Remodeling.
    Yee CS; Schurman CA; White CR; Alliston T
    Curr Osteoporos Rep; 2019 Aug; 17(4):157-168. PubMed ID: 31227998
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanotransduction and strain amplification in osteocyte cell processes.
    Han Y; Cowin SC; Schaffler MB; Weinbaum S
    Proc Natl Acad Sci U S A; 2004 Nov; 101(47):16689-94. PubMed ID: 15539460
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Towards quantitative 3D imaging of the osteocyte lacuno-canalicular network.
    Schneider P; Meier M; Wepf R; Müller R
    Bone; 2010 Nov; 47(5):848-58. PubMed ID: 20691297
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Bone remodeling numerical simulation on the basis of bone adaptive theory].
    Chen B; Zhao W; Sun Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):363-7. PubMed ID: 18610623
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of implant diameter, insertion depth, and loading angle on stress/strain fields in implant/jawbone systems: finite element analysis.
    Qian L; Todo M; Matsushita Y; Koyano K
    Int J Oral Maxillofac Implants; 2009; 24(5):877-86. PubMed ID: 19865628
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting local cell deformations in engineered tissue constructs: a multilevel finite element approach.
    Breuls RG; Sengers BG; Oomens CW; Bouten CV; Baaijens FP
    J Biomech Eng; 2002 Apr; 124(2):198-207. PubMed ID: 12002129
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Couple-stress moduli of a trabecular bone idealized as a 3D periodic cellular network.
    Yoo A; Jasiuk I
    J Biomech; 2006; 39(12):2241-52. PubMed ID: 16153655
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bone canaliculus endings in the area of the osteocyte lacuna. Electron-microscopic studies.
    Pawlicki R
    Acta Anat (Basel); 1975; 91(2):292-304. PubMed ID: 1170702
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Liver tissue characterization from uniaxial stress-strain data using probabilistic and inverse finite element methods.
    Fu YB; Chui CK; Teo CL
    J Mech Behav Biomed Mater; 2013 Apr; 20():105-12. PubMed ID: 23455167
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Volume-based non-continuum modeling of bone functional adaptation.
    Wang Z; Mondry A
    Theor Biol Med Model; 2005 Feb; 2():6. PubMed ID: 15733328
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Bone adaptive digital analysis for femur bone being in disuse and overload condition].
    Chen X; Gong X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1074-8. PubMed ID: 19024449
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanotransduction in bone: genetic effects on mechanosensitivity in mice.
    Robling AG; Turner CH
    Bone; 2002 Nov; 31(5):562-9. PubMed ID: 12477569
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling of cortical bone adaptation in a rat ulna: effect of frequency.
    Chennimalai Kumar N; Dantzig JA; Jasiuk IM
    Bone; 2012 Mar; 50(3):792-7. PubMed ID: 22210383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.