These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 17196979)

  • 1. Reversible inhibition of Escherichia coli inorganic pyrophosphatase by fluoride: trapped catalytic intermediates in cryo-crystallographic studies.
    Samygina VR; Moiseev VM; Rodina EV; Vorobyeva NN; Popov AN; Kurilova SA; Nazarova TI; Avaeva SM; Bartunik HD
    J Mol Biol; 2007 Mar; 366(4):1305-17. PubMed ID: 17196979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rates of elementary catalytic steps for different metal forms of the family II pyrophosphatase from Streptococcus gordonii.
    Zyryanov AB; Vener AV; Salminen A; Goldman A; Lahti R; Baykov AA
    Biochemistry; 2004 Feb; 43(4):1065-74. PubMed ID: 14744152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of E20D substitution in the active site of Escherichia coli inorganic pyrophosphatase on its quaternary structure and catalytic properties.
    Volk SE; Dudarenkov VY; Käpylä J; Kasho VN; Voloshina OA; Salminen T; Goldman A; Lahti R; Baykov AA; Cooperman BS
    Biochemistry; 1996 Apr; 35(15):4662-9. PubMed ID: 8664255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectory site in Escherichia coli inorganic pyrophosphatase is revealed upon mutation at the intertrimeric interface.
    Sitnik TS; Vainonen JP; Rodina EV; Nazarova TI; Kurilova SA; Vorobyeva NN; Avaeva SM
    IUBMB Life; 2003 Jan; 55(1):37-41. PubMed ID: 12716061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DFT study on the mechanism of Escherichia coli inorganic pyrophosphatase.
    Yang L; Liao RZ; Yu JG; Liu RZ
    J Phys Chem B; 2009 May; 113(18):6505-10. PubMed ID: 19366250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A complete structural description of the catalytic cycle of yeast pyrophosphatase.
    Oksanen E; Ahonen AK; Tuominen H; Tuominen V; Lahti R; Goldman A; Heikinheimo P
    Biochemistry; 2007 Feb; 46(5):1228-39. PubMed ID: 17260952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural studies of metal ions in family II pyrophosphatases: the requirement for a Janus ion.
    Fabrichniy IP; Lehtiö L; Salminen A; Zyryanov AB; Baykov AA; Lahti R; Goldman A
    Biochemistry; 2004 Nov; 43(45):14403-11. PubMed ID: 15533045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluoride effects along the reaction pathway of pyrophosphatase: evidence for a second enzyme.pyrophosphate intermediate.
    Baykov AA; Fabrichniy IP; Pohjanjoki P; Zyryanov AB; Lahti R
    Biochemistry; 2000 Oct; 39(39):11939-47. PubMed ID: 11009607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structures of Escherichia coli inorganic pyrophosphatase complexed with Ca(2+) or CaPP(i) at atomic resolution and their mechanistic implications.
    Samygina VR; Popov AN; Rodina EV; Vorobyeva NN; Lamzin VS; Polyakov KM; Kurilova SA; Nazarova TI; Avaeva SM
    J Mol Biol; 2001 Nov; 314(3):633-45. PubMed ID: 11846572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-bound pyrophosphatase of Thermotoga maritima requires sodium for activity.
    Belogurov GA; Malinen AM; Turkina MV; Jalonen U; Rytkönen K; Baykov AA; Lahti R
    Biochemistry; 2005 Feb; 44(6):2088-96. PubMed ID: 15697234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of substrate at the effector site of pyrophosphatase increases the rate of its hydrolysis at the active site.
    Sitnik TS; Avaeva SM
    Biochemistry (Mosc); 2007 Jan; 72(1):68-76. PubMed ID: 17309439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substitutions of glycine residues Gly100 and Gly147 in conservative loops decrease rates of conformational rearrangements of Escherichia coli inorganic pyrophosphatase.
    Moiseev VM; Rodina EV; Kurilova SA; Vorobyeva NN; Nazarova TI; Avaeva SM
    Biochemistry (Mosc); 2005 Aug; 70(8):858-66. PubMed ID: 16212541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallographic identification of metal-binding sites in Escherichia coli inorganic pyrophosphatase.
    Kankare J; Salminen T; Lahti R; Cooperman BS; Baykov AA; Goldman A
    Biochemistry; 1996 Apr; 35(15):4670-7. PubMed ID: 8664256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Stable compound of inorganic pyrophosphatase with pyrophosphate obtained by a fluoride-mediated reaction with phosphate].
    Bakuleva NP; Baikov AA; Avaeva SM
    Biokhimiia; 1981 Sep; 46(9):1674-80. PubMed ID: 6117333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of inorganic pyrophosphatase from Helicobacter pylori.
    Wu CA; Lokanath NK; Kim DY; Park HJ; Hwang HY; Kim ST; Suh SW; Kim KK
    Acta Crystallogr D Biol Crystallogr; 2005 Nov; 61(Pt 11):1459-64. PubMed ID: 16239722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparative effects of fluoride on three enzymes, hydrolyzing pyrophosphate - acid and alkaline phosphatases and inorganic pyrophosphatase].
    Kasho VN; Baĭkov AA; Avaeva SM
    Biokhimiia; 1982 Aug; 47(8):1289-92. PubMed ID: 6127120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of normal single-stranded DNA and deoxyribo-3'-S-phosphorothiolates bound to the 3'-5' exonucleolytic active site of DNA polymerase I from Escherichia coli.
    Brautigam CA; Sun S; Piccirilli JA; Steitz TA
    Biochemistry; 1999 Jan; 38(2):696-704. PubMed ID: 9888810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in E. coli inorganic pyrophosphatase structure induced by binding of metal activators.
    Avaeva SM; Rodina EV; Vorobyeva NN; Kurilova SA; Nazarova TI; Sklyankina VA; Oganessyan VY; Harutyunyan EH
    Biochemistry (Mosc); 1998 May; 63(5):592-9. PubMed ID: 9632898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of active site mutations on the metal binding affinity, catalytic competence, and stability of the family II pyrophosphatase from Bacillus subtilis.
    Halonen P; Tammenkoski M; Niiranen L; Huopalahti S; Parfenyev AN; Goldman A; Baykov A; Lahti R
    Biochemistry; 2005 Mar; 44(10):4004-10. PubMed ID: 15751976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial evolution of an enzyme active site: structural studies of three highly active mutants of Escherichia coli alkaline phosphatase.
    Le Du MH; Lamoure C; Muller BH; Bulgakov OV; Lajeunesse E; Ménez A; Boulain JC
    J Mol Biol; 2002 Mar; 316(4):941-53. PubMed ID: 11884134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.