BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 17197415)

  • 21. Characterization of critical interactions between Ndt80 and MSE DNA defining a novel family of Ig-fold transcription factors.
    Fingerman IM; Sutphen K; Montano SP; Georgiadis MM; Vershon AK
    Nucleic Acids Res; 2004; 32(9):2947-56. PubMed ID: 15161958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA-binding domain of GCN4 induces bending of both the ATF/CREB and AP-1 binding sites of DNA.
    Dragan AI; Liu Y; Makeyeva EN; Privalov PL
    Nucleic Acids Res; 2004; 32(17):5192-7. PubMed ID: 15459288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein binding microarrays for the characterization of DNA-protein interactions.
    Bulyk ML
    Adv Biochem Eng Biotechnol; 2007; 104():65-85. PubMed ID: 17290819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of transcription factor Kar4 in regulating downstream events in the Saccharomyces cerevisiae pheromone response pathway.
    Lahav R; Gammie A; Tavazoie S; Rose MD
    Mol Cell Biol; 2007 Feb; 27(3):818-29. PubMed ID: 17101777
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein-DNA binding specificity predictions with structural models.
    Morozov AV; Havranek JJ; Baker D; Siggia ED
    Nucleic Acids Res; 2005; 33(18):5781-98. PubMed ID: 16246914
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide analysis of transcriptional dependence and probable target sites for Abf1 and Rap1 in Saccharomyces cerevisiae.
    Yarragudi A; Parfrey LW; Morse RH
    Nucleic Acids Res; 2007; 35(1):193-202. PubMed ID: 17158163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Biophysical Approach to Predicting Protein-DNA Binding Energetics.
    Locke G; Morozov AV
    Genetics; 2015 Aug; 200(4):1349-61. PubMed ID: 26081193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability selection for regression-based models of transcription factor-DNA binding specificity.
    Mordelet F; Horton J; Hartemink AJ; Engelhardt BE; Gordân R
    Bioinformatics; 2013 Jul; 29(13):i117-25. PubMed ID: 23812975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and characterization of the DNA binding domain of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80.
    Sopko R; Stuart DT
    Protein Expr Purif; 2004 Jan; 33(1):134-44. PubMed ID: 14680970
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Achieving broad substrate specificity in damage recognition by binding accessible nondamaged DNA.
    Schärer OD
    Mol Cell; 2007 Oct; 28(2):184-6. PubMed ID: 17964258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BayesPI - a new model to study protein-DNA interactions: a case study of condition-specific protein binding parameters for Yeast transcription factors.
    Wang J; Morigen
    BMC Bioinformatics; 2009 Oct; 10():345. PubMed ID: 19857274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional and physical interactions between autonomously replicating sequence-binding factor 1 and the nuclear transport machinery.
    Loch CM; Mosammaparast N; Miyake T; Pemberton LF; Li R
    Traffic; 2004 Dec; 5(12):925-35. PubMed ID: 15522095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. By the company they keep: interaction networks define the binding ability of transcription factors.
    Cirillo D; Botta-Orfila T; Tartaglia GG
    Nucleic Acids Res; 2015 Oct; 43(19):e125. PubMed ID: 26089389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA and protein footprinting analysis of the modulation of DNA binding by the N-terminal domain of the Saccharomyces cerevisiae TATA binding protein.
    Gupta S; Cheng H; Mollah AK; Jamison E; Morris S; Chance MR; Khrapunov S; Brenowitz M
    Biochemistry; 2007 Sep; 46(35):9886-98. PubMed ID: 17683121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative evaluation of protein-DNA interactions using an optimized knowledge-based potential.
    Liu Z; Mao F; Guo JT; Yan B; Wang P; Qu Y; Xu Y
    Nucleic Acids Res; 2005; 33(2):546-58. PubMed ID: 15673715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and functional aspects of winged-helix domains at the core of transcription initiation complexes.
    Teichmann M; Dumay-Odelot H; Fribourg S
    Transcription; 2012; 3(1):2-7. PubMed ID: 22456313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High resolution protein-DNA binding energy landscapes via a novel high throughput method.
    Plum GE; Breslauer DN; Breslauer KJ
    Biopolymers; 2007 Apr 5-15; 85(5-6):vii-viii. PubMed ID: 17366530
    [No Abstract]   [Full Text] [Related]  

  • 38. Truncated variants of the GCN4 transcription activator protein bind DNA with dramatically different dynamical motifs.
    McHarris DM; Barr DA
    J Chem Inf Model; 2014 Oct; 54(10):2869-75. PubMed ID: 25204850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ceres: software for the integrated analysis of transcription factor binding sites and nucleosome positions in Saccharomyces cerevisiae.
    Morris RT; O'Connor TR; Wyrick JJ
    Bioinformatics; 2010 Jan; 26(2):168-74. PubMed ID: 19959498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.