BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 17197429)

  • 1. Iron chelation regulates cyclin D1 expression via the proteasome: a link to iron deficiency-mediated growth suppression.
    Nurtjahja-Tjendraputra E; Fu D; Phang JM; Richardson DR
    Blood; 2007 May; 109(9):4045-54. PubMed ID: 17197429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron chelation and regulation of the cell cycle: 2 mechanisms of posttranscriptional regulation of the universal cyclin-dependent kinase inhibitor p21CIP1/WAF1 by iron depletion.
    Fu D; Richardson DR
    Blood; 2007 Jul; 110(2):752-61. PubMed ID: 17429006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potent iron chelators increase the mRNA levels of the universal cyclin-dependent kinase inhibitor p21(CIP1/WAF1), but paradoxically inhibit its translation: a potential mechanism of cell cycle dysregulation.
    Le NT; Richardson DR
    Carcinogenesis; 2003 Jun; 24(6):1045-58. PubMed ID: 12807743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents III: the effect of the ligands on molecular targets involved in proliferation.
    Darnell G; Richardson DR
    Blood; 1999 Jul; 94(2):781-92. PubMed ID: 10397746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of novel aroylhydrazone ligands for iron chelation therapy: 2-pyridylcarboxaldehyde isonicotinoyl hydrazone analogs.
    Becker E; Richardson DR
    J Lab Clin Med; 1999 Nov; 134(5):510-21. PubMed ID: 10560945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning cell cycle regulation with an iron key.
    Yu Y; Kovacevic Z; Richardson DR
    Cell Cycle; 2007 Aug; 6(16):1982-94. PubMed ID: 17721086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents, IV: The mechanisms involved in inhibiting cell-cycle progression.
    Gao J; Richardson DR
    Blood; 2001 Aug; 98(3):842-50. PubMed ID: 11468187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311.
    Chaston TB; Lovejoy DB; Watts RN; Richardson DR
    Clin Cancer Res; 2003 Jan; 9(1):402-14. PubMed ID: 12538494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oncostatin M induces growth arrest of skeletal muscle cells in G1 phase by regulating cyclin D1 protein level.
    Kim H; Jo C; Jang BG; Oh U; Jo SA
    Cell Signal; 2008 Jan; 20(1):120-9. PubMed ID: 17976956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: association of transforming growth factor beta1 (TGF-beta1)-mediated p27Kip1 expression.
    Yoon G; Kim HJ; Yoon YS; Cho H; Lim IK; Lee JH
    Biochem J; 2002 Sep; 366(Pt 2):613-21. PubMed ID: 11945174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron chelation and 2-oxoglutarate-dependent dioxygenase inhibition suppress mantle cell lymphoma's cyclin D1.
    Babosova O; Kapralova K; Raskova Kafkova L; Korinek V; Divoky V; Prchal JT; Lanikova L
    J Cell Mol Med; 2019 Nov; 23(11):7785-7795. PubMed ID: 31517438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ubiquitin-dependent proteolysis of cyclin D1 is associated with coxsackievirus-induced cell growth arrest.
    Luo H; Zhang J; Dastvan F; Yanagawa B; Reidy MA; Zhang HM; Yang D; Wilson JE; McManus BM
    J Virol; 2003 Jan; 77(1):1-9. PubMed ID: 12477805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of potent iron chelators on the regulation of p53: examination of the expression, localization and DNA-binding activity of p53 and the transactivation of WAF1.
    Liang SX; Richardson DR
    Carcinogenesis; 2003 Oct; 24(10):1601-14. PubMed ID: 12869419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclin proteolysis as a retinoid cancer prevention mechanism.
    Dragnev KH; Freemantle SJ; Spinella MJ; Dmitrovsky E
    Ann N Y Acad Sci; 2001 Dec; 952():13-22. PubMed ID: 11795432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress-induced cyclin D1 depletion and its role in cell cycle processing.
    Pyo CW; Choi JH; Oh SM; Choi SY
    Biochim Biophys Acta; 2013 Nov; 1830(11):5316-25. PubMed ID: 23920145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroblastoma sensitivity to growth inhibition by deferrioxamine: evidence for a block in G1 phase of the cell cycle.
    Brodie C; Siriwardana G; Lucas J; Schleicher R; Terada N; Szepesi A; Gelfand E; Seligman P
    Cancer Res; 1993 Sep; 53(17):3968-75. PubMed ID: 8358725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron chelators with high antiproliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene: a link between iron metabolism and proliferation.
    Le NT; Richardson DR
    Blood; 2004 Nov; 104(9):2967-75. PubMed ID: 15251988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resibufogenin Induces G1-Phase Arrest through the Proteasomal Degradation of Cyclin D1 in Human Malignant Tumor Cells.
    Ichikawa M; Sowa Y; Iizumi Y; Aono Y; Sakai T
    PLoS One; 2015; 10(6):e0129851. PubMed ID: 26121043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of iron in cell cycle progression and the proliferation of neoplastic cells.
    Le NT; Richardson DR
    Biochim Biophys Acta; 2002 Oct; 1603(1):31-46. PubMed ID: 12242109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron deprivation inhibits cyclin-dependent kinase activity and decreases cyclin D/CDK4 protein levels in asynchronous MDA-MB-453 human breast cancer cells.
    Kulp KS; Green SL; Vulliet PR
    Exp Cell Res; 1996 Nov; 229(1):60-8. PubMed ID: 8940249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.