BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 1719753)

  • 1. Ion transport in normal and CF airway epithelia.
    Boucher RC; Chinet T; Willumsen N; Knowles MR; Stutts MJ
    Adv Exp Med Biol; 1991; 290():105-15; discussion 115-8. PubMed ID: 1719753
    [No Abstract]   [Full Text] [Related]  

  • 2. Normalization of raised sodium absorption and raised calcium-mediated chloride secretion by adenovirus-mediated expression of cystic fibrosis transmembrane conductance regulator in primary human cystic fibrosis airway epithelial cells.
    Johnson LG; Boyles SE; Wilson J; Boucher RC
    J Clin Invest; 1995 Mar; 95(3):1377-82. PubMed ID: 7533790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo nasal potential difference: techniques and protocols for assessing efficacy of gene transfer in cystic fibrosis.
    Knowles MR; Paradiso AM; Boucher RC
    Hum Gene Ther; 1995 Apr; 6(4):445-55. PubMed ID: 7542031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells.
    Rich DP; Anderson MP; Gregory RJ; Cheng SH; Paul S; Jefferson DM; McCann JD; Klinger KW; Smith AE; Welsh MJ
    Nature; 1990 Sep; 347(6291):358-63. PubMed ID: 1699126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some properties of sodium and chloride channels in respiratory epithelia of CF- and non-CF-patients.
    Disser J; Hazama A; Frömter E
    Adv Exp Med Biol; 1991; 290():133-41; discussion 141-4. PubMed ID: 1719754
    [No Abstract]   [Full Text] [Related]  

  • 6. Evidence for reduced Cl- and increased Na+ permeability in cystic fibrosis human primary cell cultures.
    Boucher RC; Cotton CU; Gatzy JT; Knowles MR; Yankaskas JR
    J Physiol; 1988 Nov; 405():77-103. PubMed ID: 3255805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defective fluid transport by cystic fibrosis airway epithelia.
    Smith JJ; Karp PH; Welsh MJ
    J Clin Invest; 1994 Mar; 93(3):1307-11. PubMed ID: 8132771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis.
    Johnson LG; Olsen JC; Sarkadi B; Moore KL; Swanstrom R; Boucher RC
    Nat Genet; 1992 Sep; 2(1):21-5. PubMed ID: 1284642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrolyte transport by airway epithelia.
    Welsh MJ
    Physiol Rev; 1987 Oct; 67(4):1143-84. PubMed ID: 3317457
    [No Abstract]   [Full Text] [Related]  

  • 10. Cystic fibrosis affects chloride and sodium channels in human airway epithelia.
    Duszyk M; French AS; Man SF
    Can J Physiol Pharmacol; 1989 Oct; 67(10):1362-5. PubMed ID: 2482124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents.
    Fulmer SB; Schwiebert EM; Morales MM; Guggino WB; Cutting GR
    Proc Natl Acad Sci U S A; 1995 Jul; 92(15):6832-6. PubMed ID: 7542778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormal localization of cystic fibrosis transmembrane conductance regulator in primary cultures of cystic fibrosis airway epithelia.
    Denning GM; Ostedgaard LS; Welsh MJ
    J Cell Biol; 1992 Aug; 118(3):551-9. PubMed ID: 1379244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human airway ion transport. Part two.
    Boucher RC
    Am J Respir Crit Care Med; 1994 Aug; 150(2):581-93. PubMed ID: 8049852
    [No Abstract]   [Full Text] [Related]  

  • 14. Noise analysis and single-channel observations of 4 pS chloride channels in human airway epithelia.
    Duszyk M; French AS; Man SF
    Biophys J; 1992 Feb; 61(2):583-7. PubMed ID: 1372182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of wild-type and deltaF508 cystic fibrosis transmembrane regulator in human respiratory epithelia.
    Kreda SM; Mall M; Mengos A; Rochelle L; Yankaskas J; Riordan JR; Boucher RC
    Mol Biol Cell; 2005 May; 16(5):2154-67. PubMed ID: 15716351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chloride channels in the apical membrane of normal and cystic fibrosis airway and intestinal epithelia.
    Anderson MP; Sheppard DN; Berger HA; Welsh MJ
    Am J Physiol; 1992 Jul; 263(1 Pt 1):L1-14. PubMed ID: 1322048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr(-/-) mice.
    Clarke LL; Grubb BR; Yankaskas JR; Cotton CU; McKenzie A; Boucher RC
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):479-83. PubMed ID: 7507247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dysfunction of CFTR bearing the delta F508 mutation.
    Welsh MJ; Denning GM; Ostedgaard LS; Anderson MP
    J Cell Sci Suppl; 1993; 17():235-9. PubMed ID: 7511616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction of cAMP-stimulated fluid secretion in cystic fibrosis airway epithelia: efficiency of adenovirus-mediated gene transfer in vitro.
    Zabner J; Couture LA; Smith AE; Welsh MJ
    Hum Gene Ther; 1994 May; 5(5):585-93. PubMed ID: 7519884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cystic fibrosis transmembrane conductance regulator (CFTR).
    Higgins CF
    Br Med Bull; 1992 Oct; 48(4):754-65. PubMed ID: 1281034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.