BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

27 related articles for article (PubMed ID: 17197540)

  • 1. Frequency of testing for detecting visual field progression.
    Gardiner SK; Crabb DP
    Br J Ophthalmol; 2002 May; 86(5):560-4. PubMed ID: 11973255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of visual field progression in glaucoma: existing methods and artificial intelligence.
    Asaoka R; Murata H
    Jpn J Ophthalmol; 2023 Sep; 67(5):546-559. PubMed ID: 37540325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Detection of Visual Field Progression Using a Spatiotemporal Boundary Detection Method.
    Berchuck SI; Mwanza JC; Tanna AP; Budenz DL; Warren JL
    Sci Rep; 2019 Mar; 9(1):4642. PubMed ID: 30874616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Visual Field Predictions with Pointwise Exponential Regression (PER) and Pointwise Linear Regression (PLR).
    Morales E; de Leon JM; Abdollahi N; Yu F; Nouri-Mahdavi K; Caprioli J
    Transl Vis Sci Technol; 2016 Mar; 5(2):12. PubMed ID: 26998405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of regression models for serial visual field analysis.
    Lee JM; Nouri-Mahdavi K; Morales E; Afifi A; Yu F; Caprioli J
    Jpn J Ophthalmol; 2014 Nov; 58(6):504-14. PubMed ID: 25163892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of glaucomatous visual field progression: pointwise analysis.
    Shon K; Wollstein G; Schuman JS; Sung KR
    Curr Eye Res; 2014 Jul; 39(7):705-10. PubMed ID: 24892993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting changes in retinal function: Analysis with Non-Stationary Weibull Error Regression and Spatial enhancement (ANSWERS).
    Zhu H; Russell RA; Saunders LJ; Ceccon S; Garway-Heath DF; Crabb DP
    PLoS One; 2014; 9(1):e85654. PubMed ID: 24465636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of an improved neurological hemifield test to identify chiasmal and postchiasmal lesions by automated perimetry.
    McCoy AN; Quigley HA; Wang J; Miller NR; Subramanian PS; Ramulu PY; Boland MV
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):1017-23. PubMed ID: 24448263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of test variability on the structure-function relationship in early glaucoma.
    Gardiner SK; Johnson CA; Demirel S
    Graefes Arch Clin Exp Ophthalmol; 2012 Dec; 250(12):1851-61. PubMed ID: 22527311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of visual field progression in glaucoma with standard achromatic perimetry: a review and practical implications.
    Nouri-Mahdavi K; Nassiri N; Giangiacomo A; Caprioli J
    Graefes Arch Clin Exp Ophthalmol; 2011 Nov; 249(11):1593-616. PubMed ID: 21870086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of progressive retinal nerve fiber layer thickness loss with optical coherence tomography using 4 criteria for functional progression.
    Grewal DS; Sehi M; Paauw JD; Greenfield DS;
    J Glaucoma; 2012; 21(4):214-20. PubMed ID: 21654510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of change in visual field on health-related quality of life the los angeles latino eye study.
    Patino CM; Varma R; Azen SP; Conti DV; Nichol MB; McKean-Cowdin R;
    Ophthalmology; 2011 Jul; 118(7):1310-7. PubMed ID: 21458074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perimetric indices as predictors of future glaucomatous functional change.
    Gardiner SK; Demirel S; Johnson CA
    Optom Vis Sci; 2011 Jan; 88(1):56-62. PubMed ID: 20966804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring glaucomatous visual field progression: the effect of a novel spatial filter.
    Strouthidis NG; Scott A; Viswanathan AC; Crabb DP; Garway-Heath DF
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):251-7. PubMed ID: 17197540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement.
    Strouthidis NG; Scott A; Peter NM; Garway-Heath DF
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):2904-10. PubMed ID: 16799032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring glaucomatous progression using a novel Heidelberg Retina Tomograph event analysis.
    Fayers T; Strouthidis NG; Garway-Heath DF
    Ophthalmology; 2007 Nov; 114(11):1973-80. PubMed ID: 17662455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical evaluation of the diagnostic accuracy of methods used to determine the progression of visual field defects in glaucoma.
    Mayama C; Araie M; Suzuki Y; Ishida K; Yamamoto T; Kitazawa Y; Shirakashi M; Abe H; Tsukamoto H; Mishima HK; Yoshimura K; Ohashi Y
    Ophthalmology; 2004 Nov; 111(11):2117-25. PubMed ID: 15522380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Heidelberg retina tomograph Glaucoma Probability Score: reproducibility and measurement of progression.
    Strouthidis NG; Demirel S; Asaoka R; Cossio-Zuniga C; Garway-Heath DF
    Ophthalmology; 2010 Apr; 117(4):724-9. PubMed ID: 20045564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study.
    Nouri-Mahdavi K; Hoffman D; Coleman AL; Liu G; Li G; Gaasterland D; Caprioli J;
    Ophthalmology; 2004 Sep; 111(9):1627-35. PubMed ID: 15350314
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.