These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17198385)

  • 1. Human glycinamide ribonucleotide transformylase: active site mutants as mechanistic probes.
    Manieri W; Moore ME; Soellner MB; Tsang P; Caperelli CA
    Biochemistry; 2007 Jan; 46(1):156-63. PubMed ID: 17198385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic mechanism of Escherichia coli glycinamide ribonucleotide transformylase probed by site-directed mutagenesis and pH-dependent studies.
    Shim JH; Benkovic SJ
    Biochemistry; 1999 Aug; 38(31):10024-31. PubMed ID: 10433709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The apo and ternary complex structures of a chemotherapeutic target: human glycinamide ribonucleotide transformylase.
    Dahms TE; Sainz G; Giroux EL; Caperelli CA; Smith JL
    Biochemistry; 2005 Jul; 44(29):9841-50. PubMed ID: 16026156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial manipulation of three key active site residues in glycinamide ribonucleotide transformylase.
    Warren MS; Benkovic SJ
    Protein Eng; 1997 Jan; 10(1):63-8. PubMed ID: 9051735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton transfer dynamics of GART: the pH-dependent catalytic mechanism examined by electrostatic calculations.
    Morikis D; Elcock AH; Jennings PA; McCammon JA
    Protein Sci; 2001 Nov; 10(11):2379-92. PubMed ID: 11604543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active-site mapping and site-specific mutagenesis of glycinamide ribonucleotide transformylase from Escherichia coli.
    Inglese J; Smith JM; Benkovic SJ
    Biochemistry; 1990 Jul; 29(28):6678-87. PubMed ID: 2204419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the kinetic mechanism of Escherichia coli glycinamide ribonucleotide transformylase.
    Shim JH; Benkovic SJ
    Biochemistry; 1998 Jun; 37(24):8776-82. PubMed ID: 9628739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rapid screen of active site mutants in glycinamide ribonucleotide transformylase.
    Warren MS; Marolewski AE; Benkovic SJ
    Biochemistry; 1996 Jul; 35(27):8855-62. PubMed ID: 8688421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pH-dependent stabilization of an active site loop observed from low and high pH crystal structures of mutant monomeric glycinamide ribonucleotide transformylase at 1.8 to 1.9 A.
    Su Y; Yamashita MM; Greasley SE; Mullen CA; Shim JH; Jennings PA; Benkovic SJ; Wilson IA
    J Mol Biol; 1998 Aug; 281(3):485-99. PubMed ID: 9698564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The human glycinamide ribonucleotide transformylase domain: purification, characterization, and kinetic mechanism.
    Caperelli CA; Giroux EL
    Arch Biochem Biophys; 1997 May; 341(1):98-103. PubMed ID: 9143358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of apo and complexed Escherichia coli glycinamide ribonucleotide transformylase.
    Almassy RJ; Janson CA; Kan CC; Hostomska Z
    Proc Natl Acad Sci U S A; 1992 Jul; 89(13):6114-8. PubMed ID: 1631098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of glycinamide ribonucleotide transformylase (PurN) from Mycobacterium tuberculosis reveal a novel dimer with relevance to drug discovery.
    Zhang Z; Caradoc-Davies TT; Dickson JM; Baker EN; Squire CJ
    J Mol Biol; 2009 Jun; 389(4):722-33. PubMed ID: 19394344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate specificity of human glycinamide ribonucleotide transformylase.
    Antle VD; Donat N; Hua M; Liao PL; Vince R; Carperelli CA
    Arch Biochem Biophys; 1999 Oct; 370(2):231-5. PubMed ID: 10577357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbocyclic glycinamide ribonucleotide is a substrate for glycinamide ribonucleotide transformylase.
    Caperelli CA; Price MF
    Arch Biochem Biophys; 1988 Jul; 264(1):340-2. PubMed ID: 3395127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis of a highly conserved aspartate in the putative 10-formyl-tetrahydrofolate binding site of yeast C1-tetrahydrofolate synthase.
    Kirksey TJ; Appling DR
    Arch Biochem Biophys; 1996 Sep; 333(1):251-9. PubMed ID: 8806778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB
    Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein preparation, crystallization and preliminary crystallographic studies of Bacillus subtilis glycinamide ribonucleotide transformylase.
    Liang YH; Liu XY; Wang J; Li LF
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Jul; 65(Pt 7):709-11. PubMed ID: 19574646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single mutation disrupts the pH-dependent dimerization of glycinamide ribonucleotide transformylase.
    Mullen CA; Jennings PA
    J Mol Biol; 1998 Mar; 276(4):819-27. PubMed ID: 9500916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological and structural evaluation of 10R- and 10S-methylthio-DDACTHF reveals a new role for sulfur in inhibition of glycinamide ribonucleotide transformylase.
    Connelly S; DeMartino JK; Boger DL; Wilson IA
    Biochemistry; 2013 Jul; 52(30):5133-44. PubMed ID: 23869564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH Effects and Cooperativity among Key Titratable Residues for
    Gupta PL; Smith JS; Roitberg AE
    J Phys Chem B; 2021 Aug; 125(32):9168-9185. PubMed ID: 34351775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.