These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
608 related articles for article (PubMed ID: 17198400)
1. Thermodynamic investigation into the mechanisms of proton-coupled electron transfer events in heme protein maquettes. Reddi AR; Reedy CJ; Mui S; Gibney BR Biochemistry; 2007 Jan; 46(1):291-305. PubMed ID: 17198400 [TBL] [Abstract][Full Text] [Related]
2. Evaluating the roles of the heme a side chains in cytochrome c oxidase using designed heme proteins. Zhuang J; Reddi AR; Wang Z; Khodaverdian B; Hegg EL; Gibney BR Biochemistry; 2006 Oct; 45(41):12530-8. PubMed ID: 17029408 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of electron-withdrawing group effects on heme binding in designed proteins: implications for heme a in cytochrome c oxidase. Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR Inorg Chem; 2006 Jun; 45(12):4685-94. PubMed ID: 16749832 [TBL] [Abstract][Full Text] [Related]
4. Effect of four helix bundle topology on heme binding and redox properties. Gibney BR; Rabanal F; Reddy KS; Dutton PL Biochemistry; 1998 Mar; 37(13):4635-43. PubMed ID: 9521784 [TBL] [Abstract][Full Text] [Related]
5. Self-assembly of heme A and heme B in a designed four-helix bundle: implications for a cytochrome c oxidase maquette. Gibney BR; Isogai Y; Rabanal F; Reddy KS; Grosset AM; Moser CC; Dutton PL Biochemistry; 2000 Sep; 39(36):11041-9. PubMed ID: 10998241 [TBL] [Abstract][Full Text] [Related]
6. Functionalized de novo designed proteins: mechanism of proton coupling to oxidation/reduction in heme protein maquettes. Shifman JM; Moser CC; Kalsbeck WA; Bocian DF; Dutton PL Biochemistry; 1998 Nov; 37(47):16815-27. PubMed ID: 9843452 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical and spectroscopic investigations of immobilized de novo designed heme proteins on metal electrodes. Albrecht T; Li W; Ulstrup J; Haehnel W; Hildebrandt P Chemphyschem; 2005 May; 6(5):961-70. PubMed ID: 15884083 [TBL] [Abstract][Full Text] [Related]
8. Characterization of electronic structure and properties of a Bis(histidine) heme model complex. Smith DM; Dupuis M; Vorpagel ER; Straatsma TP J Am Chem Soc; 2003 Mar; 125(9):2711-7. PubMed ID: 12603159 [TBL] [Abstract][Full Text] [Related]
9. The coordination of imidazole and substituted pyridines by the hemeoctapeptide N-acetyl-ferromicroperoxidase-8 (FeIINAcMP8). Vashi PR; Marques HM J Inorg Biochem; 2004 Sep; 98(9):1471-82. PubMed ID: 15337599 [TBL] [Abstract][Full Text] [Related]
11. How cytochromes with different folds control heme redox potentials. Mao J; Hauser K; Gunner MR Biochemistry; 2003 Aug; 42(33):9829-40. PubMed ID: 12924932 [TBL] [Abstract][Full Text] [Related]
12. Simulation of electron-proton coupling with a Monte Carlo method: application to cytochrome c3 using continuum electrostatics. Baptista AM; Martel PJ; Soares CM Biophys J; 1999 Jun; 76(6):2978-98. PubMed ID: 10354425 [TBL] [Abstract][Full Text] [Related]
13. Heme redox potential control in de novo designed four-alpha-helix bundle proteins. Shifman JM; Gibney BR; Sharp RE; Dutton PL Biochemistry; 2000 Dec; 39(48):14813-21. PubMed ID: 11101297 [TBL] [Abstract][Full Text] [Related]
14. Design and synthesis of de novo cytochromes c. Ishida M; Dohmae N; Shiro Y; Oku T; Iizuka T; Isogai Y Biochemistry; 2004 Aug; 43(30):9823-33. PubMed ID: 15274636 [TBL] [Abstract][Full Text] [Related]
15. Effects of metal ions in the CuB center on the redox properties of heme in heme-copper oxidases: spectroelectrochemical studies of an engineered heme-copper center in myoglobin. Zhao X; Yeung N; Wang Z; Guo Z; Lu Y Biochemistry; 2005 Feb; 44(4):1210-4. PubMed ID: 15667214 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic redox behavior of the heme centers of cbb3 heme-copper oxygen reductase from Bradyrhizobium japonicum. VerĂssimo AF; Sousa FL; Baptista AM; Teixeira M; Pereira MM Biochemistry; 2007 Nov; 46(46):13245-53. PubMed ID: 17963363 [TBL] [Abstract][Full Text] [Related]
17. Design of a novel heme protein with a non-heme globin scaffold. Isogai Y; Ishida M Biochemistry; 2009 Sep; 48(34):8136-42. PubMed ID: 19601582 [TBL] [Abstract][Full Text] [Related]
18. Studies of the reduction and protonation behavior of tetraheme cytochromes using atomic detail. Teixeira VH; Soares CM; Baptista AM J Biol Inorg Chem; 2002 Jan; 7(1-2):200-16. PubMed ID: 11862556 [TBL] [Abstract][Full Text] [Related]
19. Design of a five-coordinate heme protein maquette: a spectroscopic model of deoxymyoglobin. Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR Inorg Chem; 2004 Dec; 43(26):8218-20. PubMed ID: 15606161 [TBL] [Abstract][Full Text] [Related]
20. Deducing the energetic cost of protein folding in zinc finger proteins using designed metallopeptides. Reddi AR; Guzman TR; Breece RM; Tierney DL; Gibney BR J Am Chem Soc; 2007 Oct; 129(42):12815-27. PubMed ID: 17902663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]