These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
591 related articles for article (PubMed ID: 17198720)
1. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Bravo A; Gill SS; Soberón M Toxicon; 2007 Mar; 49(4):423-35. PubMed ID: 17198720 [TBL] [Abstract][Full Text] [Related]
2. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Gómez I; Pardo-López L; Muñoz-Garay C; Fernandez LE; Pérez C; Sánchez J; Soberón M; Bravo A Peptides; 2007 Jan; 28(1):169-73. PubMed ID: 17145116 [TBL] [Abstract][Full Text] [Related]
3. Oligomerization is a key step in Cyt1Aa membrane insertion and toxicity but not necessary to synergize Cry11Aa toxicity in Aedes aegypti larvae. López-Diaz JA; Cantón PE; Gill SS; Soberón M; Bravo A Environ Microbiol; 2013 Nov; 15(11):3030-9. PubMed ID: 24112611 [TBL] [Abstract][Full Text] [Related]
4. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. Pardo-López L; Soberón M; Bravo A FEMS Microbiol Rev; 2013 Jan; 37(1):3-22. PubMed ID: 22540421 [TBL] [Abstract][Full Text] [Related]
5. Pore formation by Cry toxins. Soberón M; Pardo L; Muñóz-Garay C; Sánchez J; Gómez I; Porta H; Bravo A Adv Exp Med Biol; 2010; 677():127-42. PubMed ID: 20687486 [TBL] [Abstract][Full Text] [Related]
6. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. Vachon V; Laprade R; Schwartz JL J Invertebr Pathol; 2012 Sep; 111(1):1-12. PubMed ID: 22617276 [TBL] [Abstract][Full Text] [Related]
7. Structural changes of the Cry1Ac oligomeric pre-pore from bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion. Pardo-López L; Gómez I; Rausell C; Sanchez J; Soberón M; Bravo A Biochemistry; 2006 Aug; 45(34):10329-36. PubMed ID: 16922508 [TBL] [Abstract][Full Text] [Related]
8. Potential Prepore Trimer Formation by the Bacillus thuringiensis Mosquito-specific Toxin: MOLECULAR INSIGHTS INTO A CRITICAL PREREQUISITE OF MEMBRANE-BOUND MONOMERS. Sriwimol W; Aroonkesorn A; Sakdee S; Kanchanawarin C; Uchihashi T; Ando T; Angsuthanasombat C J Biol Chem; 2015 Aug; 290(34):20793-20803. PubMed ID: 26112409 [TBL] [Abstract][Full Text] [Related]
9. The Cytocidal Spectrum of Mendoza-Almanza G; Esparza-Ibarra EL; Ayala-Luján JL; Mercado-Reyes M; Godina-González S; Hernández-Barrales M; Olmos-Soto J Toxins (Basel); 2020 May; 12(5):. PubMed ID: 32384723 [No Abstract] [Full Text] [Related]
11. Dominant negative mutants of Bacillus thuringiensis Cry1Ab toxin function as anti-toxins: demonstration of the role of oligomerization in toxicity. Rodríguez-Almazán C; Zavala LE; Muñoz-Garay C; Jiménez-Juárez N; Pacheco S; Masson L; Soberón M; Bravo A PLoS One; 2009; 4(5):e5545. PubMed ID: 19440244 [TBL] [Abstract][Full Text] [Related]
12. Mode of action of mosquitocidal Bacillus thuringiensis toxins. Soberón M; Fernández LE; Pérez C; Gill SS; Bravo A Toxicon; 2007 Apr; 49(5):597-600. PubMed ID: 17145072 [TBL] [Abstract][Full Text] [Related]
13. Role of receptors in Bacillus thuringiensis crystal toxin activity. Pigott CR; Ellar DJ Microbiol Mol Biol Rev; 2007 Jun; 71(2):255-81. PubMed ID: 17554045 [TBL] [Abstract][Full Text] [Related]
14. Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins. Xu C; Wang BC; Yu Z; Sun M Toxins (Basel); 2014 Sep; 6(9):2732-70. PubMed ID: 25229189 [TBL] [Abstract][Full Text] [Related]
15. Cell lines as models for the study of Cry toxins from Bacillus thuringiensis. Soberón M; Portugal L; Garcia-Gómez BI; Sánchez J; Onofre J; Gómez I; Pacheco S; Bravo A Insect Biochem Mol Biol; 2018 Feb; 93():66-78. PubMed ID: 29269111 [TBL] [Abstract][Full Text] [Related]
16. Cyt toxins produced by Bacillus thuringiensis: a protein fold conserved in several pathogenic microorganisms. Soberón M; López-Díaz JA; Bravo A Peptides; 2013 Mar; 41():87-93. PubMed ID: 22691603 [TBL] [Abstract][Full Text] [Related]
18. Specific epitopes of domains II and III of Bacillus thuringiensis Cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta. Gómez I; Arenas I; Benitez I; Miranda-Ríos J; Becerril B; Grande R; Almagro JC; Bravo A; Soberón M J Biol Chem; 2006 Nov; 281(45):34032-9. PubMed ID: 16968705 [TBL] [Abstract][Full Text] [Related]
19. Silencing of an ABC transporter, but not a cadherin, decreases the susceptibility of Colorado potato beetle larvae to Bacillus thuringiensis ssp. tenebrionis Cry3Aa toxin. Güney G; Cedden D; Hänniger S; Heckel DG; Coutu C; Hegedus DD; Mutlu DA; Suludere Z; Sezen K; Güney E; Toprak U Arch Insect Biochem Physiol; 2021 Oct; 108(2):e21834. PubMed ID: 34288075 [TBL] [Abstract][Full Text] [Related]
20. Molecular approaches to improve the insecticidal activity of Bacillus thuringiensis Cry toxins. Lucena WA; Pelegrini PB; Martins-de-Sa D; Fonseca FC; Gomes JE; de Macedo LL; da Silva MC; Oliveira RS; Grossi-de-Sa MF Toxins (Basel); 2014 Aug; 6(8):2393-423. PubMed ID: 25123558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]