These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 17199291)
1. Formation of the early photoproduct lumi-R of cyanobacterial phytochrome cph1 observed by ultrafast mid-infrared spectroscopy. van Thor JJ; Ronayne KL; Towrie M J Am Chem Soc; 2007 Jan; 129(1):126-32. PubMed ID: 17199291 [TBL] [Abstract][Full Text] [Related]
2. Mid-infrared picosecond pump-dump-probe and pump-repump-probe experiments to resolve a ground-state intermediate in cyanobacterial phytochrome Cph1. van Wilderen LJ; Clark IP; Towrie M; van Thor JJ J Phys Chem B; 2009 Dec; 113(51):16354-64. PubMed ID: 19950906 [TBL] [Abstract][Full Text] [Related]
3. Resonance raman analysis of chromophore structure in the lumi-R photoproduct of phytochrome. Andel F; Lagarias JC; Mathies RA Biochemistry; 1996 Dec; 35(50):15997-6008. PubMed ID: 8973170 [TBL] [Abstract][Full Text] [Related]
4. Pump-dump-probe and pump-repump-probe ultrafast spectroscopy resolves cross section of an early ground state intermediate and stimulated emission in the photoreactions of the Pr ground state of the cyanobacterial phytochrome Cph1. Fitzpatrick AE; Lincoln CN; van Wilderen LJ; van Thor JJ J Phys Chem B; 2012 Jan; 116(3):1077-88. PubMed ID: 22098118 [TBL] [Abstract][Full Text] [Related]
5. Real-time tracking of phytochrome's orientational changes during Pr photoisomerization. Yang Y; Linke M; von Haimberger T; Hahn J; Matute R; González L; Schmieder P; Heyne K J Am Chem Soc; 2012 Jan; 134(3):1408-11. PubMed ID: 22229806 [TBL] [Abstract][Full Text] [Related]
6. [Study on the reconstitution in vitro and photochemical activities of phytochrome from the Synechocystis sp. PCC6803]. Dong YR; Ran Y; Zhao KH; Zhou M Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):238-44. PubMed ID: 15969115 [TBL] [Abstract][Full Text] [Related]
7. Fourier-transform infrared spectroscopy of phytochrome: difference spectra of the intermediates of the photoreactions. Foerstendorf H; Mummert E; Schäfer E; Scheer H; Siebert F Biochemistry; 1996 Aug; 35(33):10793-9. PubMed ID: 8718870 [TBL] [Abstract][Full Text] [Related]
8. Ultrafast red light activation of Synechocystis phytochrome Cph1 triggers major structural change to form the Pfr signalling-competent state. Heyes DJ; Khara B; Sakuma M; Hardman SJ; O'Cualain R; Rigby SE; Scrutton NS PLoS One; 2012; 7(12):e52418. PubMed ID: 23300666 [TBL] [Abstract][Full Text] [Related]
9. Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy. Dasgupta J; Frontiera RR; Taylor KC; Lagarias JC; Mathies RA Proc Natl Acad Sci U S A; 2009 Feb; 106(6):1784-9. PubMed ID: 19179399 [TBL] [Abstract][Full Text] [Related]
10. 15N MAS NMR studies of cph1 phytochrome: Chromophore dynamics and intramolecular signal transduction. Rohmer T; Strauss H; Hughes J; de Groot H; Gärtner W; Schmieder P; Matysik J J Phys Chem B; 2006 Oct; 110(41):20580-5. PubMed ID: 17034247 [TBL] [Abstract][Full Text] [Related]
11. The photoreactions of recombinant phytochrome CphA from the cyanobacterium Calothrix PCC7601: a low-temperature UV-Vis and FTIR study. Schwinté P; Gärtner W; Sharda S; Mroginski MA; Hildebrandt P; Siebert F Photochem Photobiol; 2009; 85(1):239-49. PubMed ID: 18764898 [TBL] [Abstract][Full Text] [Related]
12. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization. Herbst J; Heyne K; Diller R Science; 2002 Aug; 297(5582):822-5. PubMed ID: 12161649 [TBL] [Abstract][Full Text] [Related]
13. Conformational Homogeneity in the P Bizimana LA; Epstein J; Brazard J; Turner DB J Phys Chem B; 2017 Mar; 121(12):2622-2630. PubMed ID: 28282147 [TBL] [Abstract][Full Text] [Related]
14. Sub-picosecond mid-infrared spectroscopy of phytochrome Agp1 from Agrobacterium tumefaciens. Schumann C; Gross R; Michael N; Lamparter T; Diller R Chemphyschem; 2007 Aug; 8(11):1657-63. PubMed ID: 17614346 [TBL] [Abstract][Full Text] [Related]
15. Heteronuclear NMR investigation on the structure and dynamics of the chromophore binding pocket of the cyanobacterial phytochrome Cph1. Hahn J; Strauss HM; Schmieder P J Am Chem Soc; 2008 Aug; 130(33):11170-8. PubMed ID: 18642805 [TBL] [Abstract][Full Text] [Related]
16. Phytochrome as molecular machine: revealing chromophore action during the Pfr --> Pr photoconversion by magic-angle spinning NMR spectroscopy. Rohmer T; Lang C; Bongards C; Gupta KB; Neugebauer J; Hughes J; Gärtner W; Matysik J J Am Chem Soc; 2010 Mar; 132(12):4431-7. PubMed ID: 20205422 [TBL] [Abstract][Full Text] [Related]
17. Ultrafast dynamics of phytochrome from the cyanobacterium synechocystis, reconstituted with phycocyanobilin and phycoerythrobilin. Heyne K; Herbst J; Stehlik D; Esteban B; Lamparter T; Hughes J; Diller R Biophys J; 2002 Feb; 82(2):1004-16. PubMed ID: 11806940 [TBL] [Abstract][Full Text] [Related]
18. Solution-state (15)N NMR spectroscopic study of alpha-C-phycocyanin: implications for the structure of the chromophore-binding pocket of the cyanobacterial phytochrome Cph1. Hahn J; Kühne R; Schmieder P Chembiochem; 2007 Dec; 8(18):2249-55. PubMed ID: 17973280 [TBL] [Abstract][Full Text] [Related]
19. Heterogeneous photodynamics of the pfr state in the cyanobacterial phytochrome Cph1. Kim PW; Rockwell NC; Martin SS; Lagarias JC; Larsen DS Biochemistry; 2014 Jul; 53(28):4601-11. PubMed ID: 24940993 [TBL] [Abstract][Full Text] [Related]