These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Vapor-liquid-solid and vapor-solid growth of phase-change Sb2Te3 nanowires and Sb2Te3/GeTe nanowire heterostructures. Lee JS; Brittman S; Yu D; Park H J Am Chem Soc; 2008 May; 130(19):6252-8. PubMed ID: 18402451 [TBL] [Abstract][Full Text] [Related]
4. Expanding the one-dimensional CdS-CdSe composition landscape: axially anisotropic CdS 1-x Se x nanorods. Ruberu TP; Vela J ACS Nano; 2011 Jul; 5(7):5775-84. PubMed ID: 21634398 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. Barrelet CJ; Wu Y; Bell DC; Lieber CM J Am Chem Soc; 2003 Sep; 125(38):11498-9. PubMed ID: 13129343 [TBL] [Abstract][Full Text] [Related]
9. Mapping the optical properties of CdSe/CdS heterostructure nanocrystals: the effects of core size and shell thickness. van Embden J; Jasieniak J; Mulvaney P J Am Chem Soc; 2009 Oct; 131(40):14299-309. PubMed ID: 19754114 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and photoluminescent properties of heteroepitaxial ZnO/Zn0.8Mg0.2O coaxial nanorod heterostructures. Park WI; Yoo J; Kim DW; Yi GC; Kim M J Phys Chem B; 2006 Feb; 110(4):1516-9. PubMed ID: 16471707 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and microstructure of Cd4SiS6/Si composite nanowires. Zhan J; Bando Y; Hu J; Golberg D J Electron Microsc (Tokyo); 2005 Dec; 54(6):485-91. PubMed ID: 16556623 [TBL] [Abstract][Full Text] [Related]
13. Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host. Zhu G; Xu Z J Am Chem Soc; 2011 Jan; 133(1):148-57. PubMed ID: 21141898 [TBL] [Abstract][Full Text] [Related]
14. The synthesis of twinned silicon carbide nanowires by a catalyst-free pyrolytic deposition technique. Li J; Zhu X; Ding P; Chen Y Nanotechnology; 2009 Apr; 20(14):145602. PubMed ID: 19420530 [TBL] [Abstract][Full Text] [Related]
15. Preparation and application of L-cysteine-modified CdSe/CdS core/shell nanocrystals as a novel fluorescence probe for detection of nucleic acid. Huang F; Chen G Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jul; 70(2):318-23. PubMed ID: 17954036 [TBL] [Abstract][Full Text] [Related]
16. Anisotropic strain-induced curvature in type-II CdSe/CdTe nanorod heterostructures. McDaniel H; Zuo JM; Shim M J Am Chem Soc; 2010 Mar; 132(10):3286-8. PubMed ID: 20163144 [TBL] [Abstract][Full Text] [Related]
17. Water-soluble CdSe and CdSe/CdS nanocrystals: a greener synthetic route. Deng DW; Yu JS; Pan Y J Colloid Interface Sci; 2006 Jul; 299(1):225-32. PubMed ID: 16494893 [TBL] [Abstract][Full Text] [Related]
18. Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property. Yao WT; Yu SH; Liu SJ; Chen JP; Liu XM; Li FQ J Phys Chem B; 2006 Jun; 110(24):11704-10. PubMed ID: 16800466 [TBL] [Abstract][Full Text] [Related]
19. General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. Shieh F; Saunders AE; Korgel BA J Phys Chem B; 2005 May; 109(18):8538-42. PubMed ID: 16852005 [TBL] [Abstract][Full Text] [Related]
20. Shape-controlled synthesis of 3D and 1D structures of CdS in a binary solution with L-cysteine's assistance. Xiong S; Xi B; Wang C; Zou G; Fei L; Wang W; Qian Y Chemistry; 2007; 13(11):3076-81. PubMed ID: 17212364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]