These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 17199341)

  • 1. Automatic integration of the reaction path using diagonally implicit Runge-Kutta methods.
    Burger SK; Yang W
    J Chem Phys; 2006 Dec; 125(24):244108. PubMed ID: 17199341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combined explicit-implicit method for high accuracy reaction path integration.
    Burger SK; Yang W
    J Chem Phys; 2006 Jun; 124(22):224102. PubMed ID: 16784258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagonally implicit symplectic Runge-Kutta methods with high algebraic and dispersion order.
    Cong YH; Jiang CX
    ScientificWorldJournal; 2014; 2014():147801. PubMed ID: 24977178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the accuracy of simulation of radiation-reaction effects with implicit Runge-Kutta-Nyström methods.
    Elkina NV; Fedotov AM; Herzing C; Ruhl H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053315. PubMed ID: 25353922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the performance of an implicit-explicit Runge-Kutta method in models of cardiac electrical activity.
    Spiteri RJ; Dean RC
    IEEE Trans Biomed Eng; 2008 May; 55(5):1488-95. PubMed ID: 18440894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved transition path sampling methods for simulation of rare events.
    Chopra M; Malshe R; Reddy AS; de Pablo JJ
    J Chem Phys; 2008 Apr; 128(14):144104. PubMed ID: 18412420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of real-time numerical integration methods applied to dynamic clamp experiments.
    Butera RJ; McCarthy ML
    J Neural Eng; 2004 Dec; 1(4):187-94. PubMed ID: 15876638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of smoothness-increasing accuracy-conserving filters for improving streamline integration through discontinuous fields.
    Steffen M; Curtis S; Kirby RM; Ryan JK
    IEEE Trans Vis Comput Graph; 2008; 14(3):680-92. PubMed ID: 18369273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quadratic string method for determining the minimum-energy path based on multiobjective optimization.
    Burger SK; Yang W
    J Chem Phys; 2006 Feb; 124(5):054109. PubMed ID: 16468853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
    Bin J; Yousuff Hussaini M; Lee S
    J Acoust Soc Am; 2009 Feb; 125(2):664-75. PubMed ID: 19206844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of an algorithm based on the Runge-Kutta-Fehlberg technique and the potential energy as a reaction coordinate to locate intrinsic reaction paths.
    Aguilar-Mogas A; Giménez X; Bofill JM
    J Comput Chem; 2010 Oct; 31(13):2510-25. PubMed ID: 20652993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential quadratic programming method for determining the minimum energy path.
    Burger SK; Yang W
    J Chem Phys; 2007 Oct; 127(16):164107. PubMed ID: 17979319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A common, avoidable source of error in molecular dynamics integrators.
    Lippert RA; Bowers KJ; Dror RO; Eastwood MP; Gregersen BA; Klepeis JL; Kolossvary I; Shaw DE
    J Chem Phys; 2007 Jan; 126(4):046101. PubMed ID: 17286520
    [No Abstract]   [Full Text] [Related]  

  • 14. The reaction path intrinsic reaction coordinate method and the Hamilton-Jacobi theory.
    Crehuet R; Bofill JM
    J Chem Phys; 2005 Jun; 122(23):234105. PubMed ID: 16008428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical determination of continuous ray tracing: the four-component method.
    Puchalski J
    Appl Opt; 1994 Apr; 33(10):1900-6. PubMed ID: 20885524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady-State-Preserving Simulation of Genetic Regulatory Systems.
    Zhang R; Ehigie JO; Hou X; You X; Yuan C
    Comput Math Methods Med; 2017; 2017():2729683. PubMed ID: 28203268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steepest descent reaction path integration using a first-order predictor-corrector method.
    Hratchian HP; Frisch MJ; Schlegel HB
    J Chem Phys; 2010 Dec; 133(22):224101. PubMed ID: 21171677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using preconditioned adaptive step size Runge-Kutta methods for solving the time-dependent Schrödinger equation.
    Tremblay JC; Carrington T
    J Chem Phys; 2004 Dec; 121(23):11535-41. PubMed ID: 15634118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modified phase-fitted and amplification-fitted Runge-Kutta-Nyström method for the numerical solution of the radial Schrödinger equation.
    Papadopoulos DF; Anastassi ZA; Simos TE
    J Mol Model; 2010 Aug; 16(8):1339-46. PubMed ID: 20127396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.