BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 17199370)

  • 1. Unified model of association-induced lower critical solution temperature phase separation and its application to solutions of telechelic poly(ethylene oxide) and of telechelic poly(N-isopropylacrylamide) in water.
    Okada Y; Tanaka F; Kujawa P; Winnik FM
    J Chem Phys; 2006 Dec; 125(24):244902. PubMed ID: 17199370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydration, phase separation and nonlinear rheology of temperature-sensitive water-soluble polymers.
    Tanaka F; Koga T; Kaneda I; Winnik FM
    J Phys Condens Matter; 2011 Jul; 23(28):284105. PubMed ID: 21709330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase separation dynamics of aqueous solutions of thermoresponsive polymers studied by a laser T-jump technique.
    Tsuboi Y; Yoshida Y; Okada K; Kitamura N
    J Phys Chem B; 2008 Mar; 112(9):2562-5. PubMed ID: 18266358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion and pH effect on the lower critical solution temperature phase behavior in neutral and acidic poly(organophosphazene) counterparts.
    Ahn S; Monge EC; Song SC
    Langmuir; 2009 Feb; 25(4):2407-18. PubMed ID: 19140714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature controlled surface hydrophobicity and interaction forces induced by poly (N-isopropylacrylamide).
    Burdukova E; Li H; Ishida N; O'Shea JP; Franks GV
    J Colloid Interface Sci; 2010 Feb; 342(2):586-92. PubMed ID: 19913799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micellar and surface properties of a poly(methyl methacrylate)-block-poly(N-isopropylacrylamide) copolymer in aqueous solution.
    Kelarakis A; Tang T; Havredaki V; Viras K; Hamley IW
    J Colloid Interface Sci; 2008 Apr; 320(1):70-3. PubMed ID: 18206903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic-electrostatic balance driving the LCST offset aggregation-redissolution behavior of N-alkylacrylamide-based ionic terpolymers.
    López-Pérez PM; da Silva RM; Pashkuleva I; Parra F; Reis RL; San Roman J
    Langmuir; 2010 Apr; 26(8):5934-41. PubMed ID: 19994868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of salt on the lower critical solution temperature of poly (N-isopropylacrylamide).
    Du H; Wickramasinghe R; Qian X
    J Phys Chem B; 2010 Dec; 114(49):16594-604. PubMed ID: 21090725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermo-induced formation of physical "cross-linking points" of PNIPAM-g-PEO in semidilute aqueous solutions.
    Chen H; Li W; Zhao H; Gao J; Zhang Q
    J Colloid Interface Sci; 2006 Jun; 298(2):991-5. PubMed ID: 16460749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction forces measured between poly(N-isopropylacrylamide) grafted surface and hydrophobic particle.
    Ishida N; Kobayashi M
    J Colloid Interface Sci; 2006 May; 297(2):513-9. PubMed ID: 16343523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of bound water in hydration-dehydration behavior of hydroxylated poly(N-isopropylacrylamide).
    Maeda T; Yamamoto K; Aoyagi T
    J Colloid Interface Sci; 2006 Oct; 302(2):467-74. PubMed ID: 16887131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH.
    Yin X; Hoffman AS; Stayton PS
    Biomacromolecules; 2006 May; 7(5):1381-5. PubMed ID: 16677016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Difference in lower critical solution temperature behavior between random copolymers and a homopolymer having solvatophilic and solvatophobic structures in an ionic liquid.
    Ueki T; Karino T; Kobayashi Y; Shibayama M; Watanabe M
    J Phys Chem B; 2007 May; 111(18):4750-4. PubMed ID: 17319714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of solvation dynamics and local ordering of water in inducing conformational transitions in poly(N-isopropylacrylamide) oligomers through the LCST.
    Deshmukh SA; Sankaranarayanan SK; Suthar K; Mancini DC
    J Phys Chem B; 2012 Mar; 116(9):2651-63. PubMed ID: 22296566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microcalorimetric Investigation on the lower critical solution temperature behavior of N-isopropycrylamide-co-acrylic acid copolymer in aqueous solution.
    Weng Y; Ding Y; Zhang G
    J Phys Chem B; 2006 Jun; 110(24):11813-7. PubMed ID: 16800482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local and network structure of thermoreversible polyrotaxane hydrogels based on poly(ethylene glycol) and methylated alpha-cyclodextrins.
    Kataoka T; Kidowaki M; Zhao C; Minamikawa H; Shimizu T; Ito K
    J Phys Chem B; 2006 Dec; 110(48):24377-83. PubMed ID: 17134190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheological study of transient networks with junctions of limited multiplicity. II. Sol/gel transition and rheology.
    Indei T
    J Chem Phys; 2007 Oct; 127(14):144905. PubMed ID: 17935437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase behavior of N-(Isopropyl)propionamide in aqueous solution and changes in hydration observed by FTIR spectroscopy.
    Geukens B; Meersman F; Nies E
    J Phys Chem B; 2008 Apr; 112(15):4474-7. PubMed ID: 18355069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-swing solid-phase extraction of heavy metals on a poly(N-isopropylacrylamide) hydrogel.
    Tokuyama H; Iwama T
    Langmuir; 2007 Dec; 23(26):13104-8. PubMed ID: 17999542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LCST and UCST behavior of poly(N-isopropylacrylamide) in DMSO/water mixed solvents studied by IR and micro-Raman spectroscopy.
    Yamauchi H; Maeda Y
    J Phys Chem B; 2007 Nov; 111(45):12964-8. PubMed ID: 17949072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.