BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 17199616)

  • 1. Microbial metagenome profiling using amplicon length heterogeneity-polymerase chain reaction proves more effective than elemental analysis in discriminating soil specimens.
    Moreno LI; Mills DK; Entry J; Sautter RT; Mathee K
    J Forensic Sci; 2006 Nov; 51(6):1315-22. PubMed ID: 17199616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial DNA profiling by multiplex terminal restriction fragment length polymorphism for forensic comparison of soil and the influence of sample condition.
    Macdonald LM; Singh BK; Thomas N; Brewer MJ; Campbell CD; Dawson LA
    J Appl Microbiol; 2008 Sep; 105(3):813-21. PubMed ID: 18429978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial and temporal influences on bacterial profiling of forensic soil samples.
    Meyers MS; Foran DR
    J Forensic Sci; 2008 May; 53(3):652-60. PubMed ID: 18471210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An eco-informatics tool for microbial community studies: supervised classification of Amplicon Length Heterogeneity (ALH) profiles of 16S rRNA.
    Yang C; Mills D; Mathee K; Wang Y; Jayachandran K; Sikaroodi M; Gillevet P; Entry J; Narasimhan G
    J Microbiol Methods; 2006 Apr; 65(1):49-62. PubMed ID: 16054254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial profiling of soil using genus-specific markers and multidimensional scaling.
    Lenz EJ; Foran DR
    J Forensic Sci; 2010 Nov; 55(6):1437-42. PubMed ID: 20533986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results?
    Smalla K; Oros-Sichler M; Milling A; Heuer H; Baumgarte S; Becker R; Neuber G; Kropf S; Ulrich A; Tebbe CC
    J Microbiol Methods; 2007 Jun; 69(3):470-9. PubMed ID: 17407797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical data analysis of bacterial t-RFLP profiles in forensic soil comparisons.
    Quaak FC; Kuiper I
    Forensic Sci Int; 2011 Jul; 210(1-3):96-101. PubMed ID: 21377814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An assessment of the hypervariable domains of the 16S rRNA genes for their value in determining microbial community diversity: the paradox of traditional ecological indices.
    Mills DK; Entry JA; Voss JD; Gillevet PM; Mathee K
    FEMS Microbiol Ecol; 2006 Sep; 57(3):496-503. PubMed ID: 16907762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the potential of bacterial DNA profiling for forensic soil comparisons.
    Heath LE; Saunders VA
    J Forensic Sci; 2006 Sep; 51(5):1062-8. PubMed ID: 17018082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple profiling of soil microbial communities identifies potential genetic markers of metal-enriched sewage sludge.
    Macdonald CA; Campbell CD; Bacon JR; Singh BK
    FEMS Microbiol Ecol; 2008 Sep; 65(3):555-64. PubMed ID: 18631175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination of soils at regional and local levels using bacterial and fungal T-RFLP profiling.
    Macdonald CA; Ang R; Cordiner SJ; Horswell J
    J Forensic Sci; 2011 Jan; 56(1):61-9. PubMed ID: 20840292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium.
    Senesi GS; Dell'Aglio M; Gaudiuso R; De Giacomo A; Zaccone C; De Pascale O; Miano TM; Capitelli M
    Environ Res; 2009 May; 109(4):413-20. PubMed ID: 19272593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forensic comparison of soils by bacterial community DNA profiling.
    Horswell J; Cordiner SJ; Maas EW; Martin TM; Sutherland KB; Speir TW; Nogales B; Osborn AM
    J Forensic Sci; 2002 Mar; 47(2):350-3. PubMed ID: 11911110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial community composition in soils of Northern Victoria Land, Antarctica.
    Niederberger TD; McDonald IR; Hacker AL; Soo RM; Barrett JE; Wall DH; Cary SC
    Environ Microbiol; 2008 Jul; 10(7):1713-24. PubMed ID: 18373679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative improvement of 16S rDNA DGGE analysis for soil bacterial community using real-time PCR.
    Ahn JH; Kim YJ; Kim T; Song HG; Kang C; Ka JO
    J Microbiol Methods; 2009 Aug; 78(2):216-22. PubMed ID: 19523498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta: Lumbricidae).
    Egert M; Marhan S; Wagner B; Scheu S; Friedrich MW
    FEMS Microbiol Ecol; 2004 May; 48(2):187-97. PubMed ID: 19712402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of genes extracted from non-viable versus viable micro-organisms in environmental samples using ethidium monoazide bromide.
    Pisz JM; Lawrence JR; Schafer AN; Siciliano SD
    J Microbiol Methods; 2007 Dec; 71(3):312-8. PubMed ID: 17963903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced methods for assessment of the trace element composition of Iron Age bone.
    Shafer MM; Siker M; Overdier JT; Ramsl PC; Teschler-Nicola M; Farrell PM
    Sci Total Environ; 2008 Aug; 401(1-3):144-61. PubMed ID: 18486196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a searchable major and trace element database for use in forensic soil comparisons.
    Pye K; Blott SJ
    Sci Justice; 2009 Sep; 49(3):170-81. PubMed ID: 19839416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of dominant bacterial phylotypes in a cadmium-treated forest soil.
    Lazzaro A; Widmer F; Sperisen C; Frey B
    FEMS Microbiol Ecol; 2008 Feb; 63(2):143-55. PubMed ID: 18093142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.