These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 17199888)

  • 1. Internalization of novel non-viral vector TAT-streptavidin into human cells.
    Rinne J; Albarran B; Jylhävä J; Ihalainen TO; Kankaanpää P; Hytönen VP; Stayton PS; Kulomaa MS; Vihinen-Ranta M
    BMC Biotechnol; 2007 Jan; 7():1. PubMed ID: 17199888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A TAT-streptavidin fusion protein directs uptake of biotinylated cargo into mammalian cells.
    Albarran B; To R; Stayton PS
    Protein Eng Des Sel; 2005 Mar; 18(3):147-52. PubMed ID: 15820981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-covalent ligand conjugation to biotinylated DNA nanoparticles using TAT peptide genetically fused to monovalent streptavidin.
    Sun W; Fletcher D; van Heeckeren RC; Davis PB
    J Drug Target; 2012 Sep; 20(8):678-90. PubMed ID: 22845840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Intracellular Delivery of a Pro-Apoptotic Peptide With A pH-Responsive Carrier.
    Albarran B; Hoffman AS; Stayton PS
    React Funct Polym; 2011 Mar; 71(3):261-265. PubMed ID: 21499545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Intracellular Delivery of Ganglioside GM3-Binding Peptide through Caveolae/Raft-Mediated Endocytosis.
    Matsubara T; Otani R; Yamashita M; Maeno H; Nodono H; Sato T
    Biomacromolecules; 2017 Feb; 18(2):355-362. PubMed ID: 28051846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human-derived fusogenic peptides for the intracellular delivery of proteins.
    Sudo K; Niikura K; Iwaki K; Kohyama S; Fujiwara K; Doi N
    J Control Release; 2017 Jun; 255():1-11. PubMed ID: 28385674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombinant fusion proteins TAT-Mu, Mu and Mu-Mu mediate efficient non-viral gene delivery.
    Rajagopalan R; Xavier J; Rangaraj N; Rao NM; Gopal V
    J Gene Med; 2007 Apr; 9(4):275-86. PubMed ID: 17397090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacokinetics and delivery of tat and tat-protein conjugates to tissues in vivo.
    Lee HJ; Pardridge WM
    Bioconjug Chem; 2001; 12(6):995-9. PubMed ID: 11716691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tat-tetanus toxin fragment C: a novel protein delivery vector and its use with photochemical internalization.
    Gramlich PA; Remington MP; Amin J; Betenbaugh MJ; Fishman PS
    J Drug Target; 2013 Aug; 21(7):662-74. PubMed ID: 23697582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular traffic and fate of protein transduction domains HIV-1 TAT peptide and octaarginine. Implications for their utilization as drug delivery vectors.
    Al-Taei S; Penning NA; Simpson JC; Futaki S; Takeuchi T; Nakase I; Jones AT
    Bioconjug Chem; 2006; 17(1):90-100. PubMed ID: 16417256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis.
    Wadia JS; Stan RV; Dowdy SF
    Nat Med; 2004 Mar; 10(3):310-5. PubMed ID: 14770178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of cell-penetrating peptide-mediated peptide delivery.
    Jones SW; Christison R; Bundell K; Voyce CJ; Brockbank SM; Newham P; Lindsay MA
    Br J Pharmacol; 2005 Aug; 145(8):1093-102. PubMed ID: 15937518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organelle-targeted delivery of biological macromolecules using the protein transduction domain: potential applications for Peptide aptamer delivery into the nucleus.
    Yoshikawa T; Sugita T; Mukai Y; Yamanada N; Nagano K; Nabeshi H; Yoshioka Y; Nakagawa S; Abe Y; Kamada H; Tsunoda S; Tsutsumi Y
    J Mol Biol; 2008 Jul; 380(5):777-82. PubMed ID: 18571668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the complement-mediated elimination of red blood cells modified with biotin and streptavidin.
    Muzykantov VR; Murciano JC; Taylor RP; Atochina EN; Herraez A
    Anal Biochem; 1996 Oct; 241(1):109-19. PubMed ID: 8921172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of uptake of cell penetrating peptides and their cargoes in permeabilized wheat immature embryos.
    Chugh A; Eudes F
    FEBS J; 2008 May; 275(10):2403-14. PubMed ID: 18397318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internalization routes of cell-penetrating melanoma antigen peptides into human dendritic cells.
    Buhl T; Braun A; Forkel S; Möbius W; van Werven L; Jahn O; Rezaei-Ghaleh N; Zweckstetter M; Mempel M; Schön MP; Haenssle HA
    Exp Dermatol; 2014 Jan; 23(1):20-6. PubMed ID: 24372650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides.
    Duchardt F; Fotin-Mleczek M; Schwarz H; Fischer R; Brock R
    Traffic; 2007 Jul; 8(7):848-66. PubMed ID: 17587406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endosome disruption enhances the functional nuclear delivery of Tat-fusion proteins.
    Caron NJ; Quenneville SP; Tremblay JP
    Biochem Biophys Res Commun; 2004 Jun; 319(1):12-20. PubMed ID: 15158435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The C2-streptavidin delivery system promotes the uptake of biotinylated molecules in macrophages and T-leukemia cells.
    Fahrer J; Rieger J; van Zandbergen G; Barth H
    Biol Chem; 2010 Nov; 391(11):1315-25. PubMed ID: 20868225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoplasmic transduction peptide (CTP): new approach for the delivery of biomolecules into cytoplasm in vitro and in vivo.
    Kim D; Jeon C; Kim JH; Kim MS; Yoon CH; Choi IS; Kim SH; Bae YS
    Exp Cell Res; 2006 May; 312(8):1277-88. PubMed ID: 16466653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.