BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

712 related articles for article (PubMed ID: 17200412)

  • 1. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease.
    Lahl K; Loddenkemper C; Drouin C; Freyer J; Arnason J; Eberl G; Hamann A; Wagner H; Huehn J; Sparwasser T
    J Exp Med; 2007 Jan; 204(1):57-63. PubMed ID: 17200412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonfunctional regulatory T cells and defective control of Th2 cytokine production in natural scurfy mutant mice.
    Lahl K; Mayer CT; Bopp T; Huehn J; Loddenkemper C; Eberl G; Wirnsberger G; Dornmair K; Geffers R; Schmitt E; Buer J; Sparwasser T
    J Immunol; 2009 Nov; 183(9):5662-72. PubMed ID: 19812199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full restoration of peripheral Foxp3+ regulatory T cell pool by radioresistant host cells in scurfy bone marrow chimeras.
    Komatsu N; Hori S
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8959-64. PubMed ID: 17494743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditional regulatory T-cell depletion releases adaptive immunity preventing carcinogenesis and suppressing established tumor growth.
    Teng MW; Ngiow SF; von Scheidt B; McLaughlin N; Sparwasser T; Smyth MJ
    Cancer Res; 2010 Oct; 70(20):7800-9. PubMed ID: 20924111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limited role of CD4+Foxp3+ regulatory T cells in the control of experimental cerebral malaria.
    Steeg C; Adler G; Sparwasser T; Fleischer B; Jacobs T
    J Immunol; 2009 Dec; 183(11):7014-22. PubMed ID: 19890049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective depletion of Foxp3+ regulatory T cells improves effective therapeutic vaccination against established melanoma.
    Klages K; Mayer CT; Lahl K; Loddenkemper C; Teng MW; Ngiow SF; Smyth MJ; Hamann A; Huehn J; Sparwasser T
    Cancer Res; 2010 Oct; 70(20):7788-99. PubMed ID: 20924102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Few Foxp3⁺ regulatory T cells are sufficient to protect adult mice from lethal autoimmunity.
    Mayer CT; Ghorbani P; Kühl AA; Stüve P; Hegemann M; Berod L; Gershwin ME; Sparwasser T
    Eur J Immunol; 2014 Oct; 44(10):2990-3002. PubMed ID: 25042334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Platelet-derived growth factor-producing CD4+ Foxp3+ regulatory T lymphocytes promote lung fibrosis.
    Lo Re S; Lecocq M; Uwambayinema F; Yakoub Y; Delos M; Demoulin JB; Lucas S; Sparwasser T; Renauld JC; Lison D; Huaux F
    Am J Respir Crit Care Med; 2011 Dec; 184(11):1270-81. PubMed ID: 21868503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TGF-beta1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets.
    Pyzik M; Piccirillo CA
    J Leukoc Biol; 2007 Aug; 82(2):335-46. PubMed ID: 17475784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dendritic cells support homeostatic expansion of Foxp3+ regulatory T cells in Foxp3.LuciDTR mice.
    Suffner J; Hochweller K; Kühnle MC; Li X; Kroczek RA; Garbi N; Hämmerling GJ
    J Immunol; 2010 Feb; 184(4):1810-20. PubMed ID: 20083650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression.
    Wan YY; Flavell RA
    Nature; 2007 Feb; 445(7129):766-70. PubMed ID: 17220876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-CD4 treatment inhibits autoimmunity in scurfy mice through the attenuation of co-stimulatory signals.
    Mayer CT; Tian L; Hesse C; Kühl AA; Swallow M; Kruse F; Thiele M; Gershwin ME; Liston A; Sparwasser T
    J Autoimmun; 2014 May; 50():23-32. PubMed ID: 24075450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression.
    Peterson RA
    Toxicol Pathol; 2012; 40(2):186-204. PubMed ID: 22222887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeated Long-Term DT Application in the DEREG Mouse Induces a Neutralizing Anti-DT Antibody Response.
    Wang J; Siffert M; Spiliotis M; Gottstein B
    J Immunol Res; 2016; 2016():1450398. PubMed ID: 28074191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lack of Foxp3 function and expression in the thymic epithelium.
    Liston A; Farr AG; Chen Z; Benoist C; Mathis D; Manley NR; Rudensky AY
    J Exp Med; 2007 Mar; 204(3):475-80. PubMed ID: 17353370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limitations of Foxp3(+) Treg depletion following viral infection in DEREG mice.
    Christiaansen AF; Boggiatto PM; Varga SM
    J Immunol Methods; 2014 Apr; 406():58-65. PubMed ID: 24642426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires.
    Hsieh CS; Zheng Y; Liang Y; Fontenot JD; Rudensky AY
    Nat Immunol; 2006 Apr; 7(4):401-10. PubMed ID: 16532000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of CTLA-4 and FOXP3 in cis protects from lethal lymphoproliferative disease.
    Chikuma S; Bluestone JA
    Eur J Immunol; 2007 May; 37(5):1285-9. PubMed ID: 17429849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity of T(reg) cells: is reprogramming of T(reg) cells possible in the presence of FOXP3?
    Beyer M; Schultze JL
    Int Immunopharmacol; 2011 May; 11(5):555-60. PubMed ID: 21115121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo depletion of FoxP3+ Tregs using the DEREG mouse model.
    Lahl K; Sparwasser T
    Methods Mol Biol; 2011; 707():157-72. PubMed ID: 21287334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.