BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 17200560)

  • 1. Visualization of intracellular PP1 targeting through transiently and stably expressed fluorescent protein fusions.
    Trinkle-Mulcahy L; Chusainow J; Lam YW; Swift S; Lamond A
    Methods Mol Biol; 2007; 365():133-54. PubMed ID: 17200560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic targeting of protein phosphatase 1 within the nuclei of living mammalian cells.
    Trinkle-Mulcahy L; Sleeman JE; Lamond AI
    J Cell Sci; 2001 Dec; 114(Pt 23):4219-28. PubMed ID: 11739654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-lapse imaging reveals dynamic relocalization of PP1gamma throughout the mammalian cell cycle.
    Trinkle-Mulcahy L; Andrews PD; Wickramasinghe S; Sleeman J; Prescott A; Lam YW; Lyon C; Swedlow JR; Lamond AI
    Mol Biol Cell; 2003 Jan; 14(1):107-17. PubMed ID: 12529430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of specific interactions of native protein phosphatase 1 isoforms with targeting subunits.
    Colbran RJ; Carmody LC; Bauman PA; Wadzinski BE; Bass MA
    Methods Enzymol; 2003; 366():156-75. PubMed ID: 14674248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NOM1 targets protein phosphatase I to the nucleolus.
    Gunawardena SR; Ruis BL; Meyer JA; Kapoor M; Conklin KF
    J Biol Chem; 2008 Jan; 283(1):398-404. PubMed ID: 17965019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determinants of the nucleolar targeting of protein phosphatase-1.
    Lesage B; Beullens M; Ceulemans H; Himpens B; Bollen M
    FEBS Lett; 2005 Oct; 579(25):5626-30. PubMed ID: 16213493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations of the serine phosphorylated in the protein phosphatase-1-binding motif in the skeletal muscle glycogen-targeting subunit.
    Liu J; Wu J; Oliver C; Shenolikar S; Brautigan DL
    Biochem J; 2000 Feb; 346 Pt 1(Pt 1):77-82. PubMed ID: 10657242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broad specificity in binding of NIPP-1, nuclear inhibitor of protein phosphatase-1, to PP1 isoforms in vivo.
    Kim SE; Shima H; Nakamura K; Kikuchi K
    Tohoku J Exp Med; 2000 May; 191(1):39-45. PubMed ID: 10896038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repo-Man recruits PP1 gamma to chromatin and is essential for cell viability.
    Trinkle-Mulcahy L; Andersen J; Lam YW; Moorhead G; Mann M; Lamond AI
    J Cell Biol; 2006 Feb; 172(5):679-92. PubMed ID: 16492807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein phosphatase 1 regulation by inhibitors and targeting subunits.
    Watanabe T; Huang HB; Horiuchi A; da Cruze Silva EF; Hsieh-Wilson L; Allen PB; Shenolikar S; Greengard P; Nairn AC
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3080-5. PubMed ID: 11248035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitor-2 functions like a chaperone to fold three expressed isoforms of mammalian protein phosphatase-1 into a conformation with the specificity and regulatory properties of the native enzyme.
    Alessi DR; Street AJ; Cohen P; Cohen PT
    Eur J Biochem; 1993 May; 213(3):1055-66. PubMed ID: 8389292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FRAP and FRET methods to study nuclear receptors in living cells.
    van Royen ME; Dinant C; Farla P; Trapman J; Houtsmuller AB
    Methods Mol Biol; 2009; 505():69-96. PubMed ID: 19117140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.
    Murakoshi H; Shibata ACE; Nakahata Y; Nabekura J
    Sci Rep; 2015 Oct; 5():15334. PubMed ID: 26469148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial acceptor photobleaching-based quantitative FRET method completely overcoming emission spectral crosstalks.
    Li H; Yu H; Chen T
    Microsc Microanal; 2012 Oct; 18(5):1021-9. PubMed ID: 23026309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SARP, a new alternatively spliced protein phosphatase 1 and DNA interacting protein.
    Browne GJ; Fardilha M; Oxenham SK; Wu W; Helps NR; da Cruz E Silva OA; Cohen PT; da Cruz E Silva EF
    Biochem J; 2007 Feb; 402(1):187-96. PubMed ID: 17123353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic distribution of BIMG(PP1) in living hyphae of Aspergillus indicates a novel role in septum formation.
    Fox H; Hickey PC; Fernández-Abalos JM; Lunness P; Read ND; Doonan JH
    Mol Microbiol; 2002 Sep; 45(5):1219-30. PubMed ID: 12207691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein.
    Millington M; Grindlay GJ; Altenbach K; Neely RK; Kolch W; Bencina M; Read ND; Jones AC; Dryden DT; Magennis SW
    Biophys Chem; 2007 May; 127(3):155-64. PubMed ID: 17336446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of PNUTS, a putative protein phosphatase 1 nuclear targeting subunit.
    Allen PB; Kwon YG; Nairn AC; Greengard P
    J Biol Chem; 1998 Feb; 273(7):4089-95. PubMed ID: 9461602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.