BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 17200574)

  • 1. Genome-scale discovery and characterization of class-specific protein sequences: an example using the protein phosphatases of Arabidopsis thaliana.
    Kerk D
    Methods Mol Biol; 2007; 365():347-70. PubMed ID: 17200574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide biochemical analysis of Arabidopsis protein phosphatase using a wheat cell-free system.
    Takahashi H; Ozawa A; Nemoto K; Nozawa A; Seki M; Shinozaki K; Takeda H; Endo Y; Sawasaki T
    FEBS Lett; 2012 Sep; 586(19):3134-41. PubMed ID: 22968126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular evolutionary analyses of the Arabidopsis L7 ribosomal protein gene family.
    Barakat A; Müller KF; Sáenz-de-Miera LE
    Gene; 2007 Nov; 403(1-2):143-50. PubMed ID: 17889453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary radiation pattern of novel protein phosphatases revealed by analysis of protein data from the completely sequenced genomes of humans, green algae, and higher plants.
    Kerk D; Templeton G; Moorhead GB
    Plant Physiol; 2008 Feb; 146(2):351-67. PubMed ID: 18156295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabidopsis thaliana proteomics: from proteome to genome.
    Baginsky S; Gruissem W
    J Exp Bot; 2006; 57(7):1485-91. PubMed ID: 16551684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of AtI-2, an Arabidopsis homologue of an ancient protein phosphatase 1 (PP1) regulatory subunit.
    Templeton GW; Nimick M; Morrice N; Campbell D; Goudreault M; Gingras AC; Takemiya A; Shimazaki K; Moorhead GB
    Biochem J; 2011 Apr; 435(1):73-83. PubMed ID: 21222654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis.
    Kerk D; Bulgrien J; Smith DW; Barsam B; Veretnik S; Gribskov M
    Plant Physiol; 2002 Jun; 129(2):908-25. PubMed ID: 12068129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide survey of prokaryotic O-protein phosphatases.
    Bhaduri A; Sowdhamini R
    J Mol Biol; 2005 Sep; 352(3):736-52. PubMed ID: 16095610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis CAPRICE-LIKE MYB 3 (CPL3) controls endoreduplication and flowering development in addition to trichome and root hair formation.
    Tominaga R; Iwata M; Sano R; Inoue K; Okada K; Wada T
    Development; 2008 Apr; 135(7):1335-45. PubMed ID: 18305006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis.
    Mora-García S; Vert G; Yin Y; Caño-Delgado A; Cheong H; Chory J
    Genes Dev; 2004 Feb; 18(4):448-60. PubMed ID: 14977918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Arabidopsis thaliana putative sialyltransferase resides in the Golgi apparatus but lacks the ability to transfer sialic acid.
    Daskalova SM; Pah AR; Baluch DP; Lopez LC
    Plant Biol (Stuttg); 2009 May; 11(3):284-99. PubMed ID: 19470101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulators of PP2C phosphatase activity function as abscisic acid sensors.
    Ma Y; Szostkiewicz I; Korte A; Moes D; Yang Y; Christmann A; Grill E
    Science; 2009 May; 324(5930):1064-8. PubMed ID: 19407143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two ancient bacterial-like PPP family phosphatases from Arabidopsis are highly conserved plant proteins that possess unique properties.
    Uhrig RG; Moorhead GB
    Plant Physiol; 2011 Dec; 157(4):1778-92. PubMed ID: 21976480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Putative microtubule-associated proteins from the Arabidopsis genome.
    Gardiner J; Marc J
    Protoplasma; 2003 Sep; 222(1-2):61-74. PubMed ID: 14513312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome cluster database. A sequence family analysis platform for Arabidopsis and rice.
    Horan K; Lauricha J; Bailey-Serres J; Raikhel N; Girke T
    Plant Physiol; 2005 May; 138(1):47-54. PubMed ID: 15888677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis C-terminal domain phosphatase-like 1 and 2 are essential Ser-5-specific C-terminal domain phosphatases.
    Koiwa H; Hausmann S; Bang WY; Ueda A; Kondo N; Hiraguri A; Fukuhara T; Bahk JD; Yun DJ; Bressan RA; Hasegawa PM; Shuman S
    Proc Natl Acad Sci U S A; 2004 Oct; 101(40):14539-44. PubMed ID: 15388846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and in vitro functional analysis of the Arabidopsis thaliana regulator of G-protein signaling-1.
    Willard FS; Siderovski DP
    Methods Enzymol; 2004; 389():320-38. PubMed ID: 15313574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homology cloning of protein kinase and phosphoprotein phosphatase sequences of Dictyostelium discoideum.
    Haribabu B; Dottin RP
    Dev Genet; 1991; 12(1-2):45-9. PubMed ID: 1646694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis PPP family of serine/threonine phosphatases.
    Farkas I; Dombrádi V; Miskei M; Szabados L; Koncz C
    Trends Plant Sci; 2007 Apr; 12(4):169-76. PubMed ID: 17368080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families.
    Lijavetzky D; Carbonero P; Vicente-Carbajosa J
    BMC Evol Biol; 2003 Jul; 3():17. PubMed ID: 12877745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.