These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17200918)

  • 1. Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nanoplatelets.
    Du W; Qian X; Ma X; Gong Q; Cao H; Yin J
    Chemistry; 2007; 13(11):3241-7. PubMed ID: 17200918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From layered double hydroxide to spinel nanostructures: facile synthesis and characterization of nanoplatelets and nanorods.
    Sun G; Sun L; Wen H; Jia Z; Huang K; Hu C
    J Phys Chem B; 2006 Jul; 110(27):13375-80. PubMed ID: 16821857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets.
    Sigman MB; Ghezelbash A; Hanrath T; Saunders AE; Lee F; Korgel BA
    J Am Chem Soc; 2003 Dec; 125(51):16050-7. PubMed ID: 14677997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy.
    Du W; Qian X; Yin J; Gong Q
    Chemistry; 2007; 13(31):8840-6. PubMed ID: 17654756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and morphology control of ZnO nanostructures in microemulsions.
    Li X; He G; Xiao G; Liu H; Wang M
    J Colloid Interface Sci; 2009 May; 333(2):465-73. PubMed ID: 19286190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-yield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characterization.
    Hou Y; Kondoh H; Shimojo M; Kogure T; Ohta T
    J Phys Chem B; 2005 Oct; 109(41):19094-8. PubMed ID: 16853462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23 nm).
    Chen D; Cao L; Huang F; Imperia P; Cheng YB; Caruso RA
    J Am Chem Soc; 2010 Mar; 132(12):4438-44. PubMed ID: 20201515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly synthesis of single-crystalline tin oxide nanostructures by a poly(acrylic acid)-assisted solvothermal process.
    Cheng G; Wang J; Liu X; Huang K
    J Phys Chem B; 2006 Aug; 110(33):16208-11. PubMed ID: 16913744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism.
    Ghezelbash A; Korgel BA
    Langmuir; 2005 Oct; 21(21):9451-6. PubMed ID: 16207021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper sulfide self-assembly architectures with improved photothermal performance.
    Bu X; Zhou D; Li J; Zhang X; Zhang K; Zhang H; Yang B
    Langmuir; 2014 Feb; 30(5):1416-23. PubMed ID: 24446661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology-controlled self-assembled nanostructures of 5,15-di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin derivatives. Effect of metal-ligand coordination bonding on tuning the intermolecular interaction.
    Gao Y; Zhang X; Ma C; Li X; Jiang J
    J Am Chem Soc; 2008 Dec; 130(50):17044-52. PubMed ID: 19007122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating surface ligands of copper sulfide nanocrystals: synthesis, characterization, and application to organic solar cells.
    Li J; Jiu T; Tao GH; Wang G; Sun C; Li P; Fang J; He L
    J Colloid Interface Sci; 2014 Apr; 419():142-7. PubMed ID: 24491341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Anisotropic Electrocatalytic Activity of Covellite Nanoplatelets with Fixed Thickness and Tunable Diameter.
    Liu Y; Zhang H; Behara PK; Wang X; Zhu D; Ding S; Ganesh SP; Dupuis M; Wu G; Swihart MT
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42417-42426. PubMed ID: 30451490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-dimensional copper hydroxide nitrate nanorods and nanobelts for radiochemical applications.
    Liu B
    Nanoscale; 2012 Nov; 4(22):7194-8. PubMed ID: 23070067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled growth of extended arrays of CoSi2 hexagonal nanoplatelets buried in Si(001), Si(011) and Si(111) wafers.
    Kellermann G; Montoro LA; Giovanetti LJ; dos Santos Claro PC; Zhang L; Ramirez AJ; Requejo FG; Craievich AF
    Phys Chem Chem Phys; 2015 Feb; 17(7):4945-51. PubMed ID: 25594082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvothermal Synthesis of Three-Dimensional Hierarchical CuS Microspheres from a Cu-Based Ionic Liquid Precursor for High-Performance Asymmetric Supercapacitors.
    Zhang J; Feng H; Yang J; Qin Q; Fan H; Wei C; Zheng W
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21735-44. PubMed ID: 26371955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation.
    Polleux J; Pinna N; Antonietti M; Niederberger M
    J Am Chem Soc; 2005 Nov; 127(44):15595-601. PubMed ID: 16262425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Template-free synthesis of BiVO4 nanostructures: I. Nanotubes with hexagonal cross sections by oriented attachment and their photocatalytic property for water splitting under visible light.
    Ren L; Jin L; Wang JB; Yang F; Qiu MQ; Yu Y
    Nanotechnology; 2009 Mar; 20(11):115603. PubMed ID: 19420443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of reaction parameters in hydrothermal synthesis: a strategy towards the formation of CuS hexagonal plates.
    Auyoong YL; Yap PL; Huang X; Abd Hamid SB
    Chem Cent J; 2013; 7():67. PubMed ID: 23575312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and assembly of monodisperse spherical Cu2S nanocrystals.
    Li S; Wang H; Xu W; Si H; Tao X; Lou S; Du Z; Li LS
    J Colloid Interface Sci; 2009 Feb; 330(2):483-7. PubMed ID: 19007936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.