These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 17200997)

  • 1. Solution structure of domain 6 from a self-splicing group II intron ribozyme: a Mg(2+) binding site is located close to the stacked branch adenosine.
    Erat MC; Zerbe O; Fox T; Sigel RK
    Chembiochem; 2007 Feb; 8(3):306-14. PubMed ID: 17200997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation of the Group II intron branch site in solution.
    Schlatterer JC; Crayton SH; Greenbaum NL
    J Am Chem Soc; 2006 Mar; 128(12):3866-7. PubMed ID: 16551067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into group II intron catalysis and branch-site selection.
    Zhang L; Doudna JA
    Science; 2002 Mar; 295(5562):2084-8. PubMed ID: 11859154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the intrinsic affinities of multiple site-specific Mg(2+) ions coordinated to domain 6 of a group II intron ribozyme.
    Erat MC; Sigel RK
    Inorg Chem; 2007 Dec; 46(26):11224-34. PubMed ID: 18044881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific phosphorothioate substitution within domain 6 of a group II intron ribozyme leads to changes in local structure and metal ion binding.
    Erat MC; Besic E; Oberhuber M; Johannsen S; Sigel RKO
    J Biol Inorg Chem; 2018 Jan; 23(1):167-177. PubMed ID: 29218637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the CYT-18 protein binding site at the junction of stacked helices in a group I intron RNA by quantitative binding assays and in vitro selection.
    Saldanha R; Ellington A; Lambowitz AM
    J Mol Biol; 1996 Aug; 261(1):23-42. PubMed ID: 8760500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The receptor for branch-site docking within a group II intron active site.
    Hamill S; Pyle AM
    Mol Cell; 2006 Sep; 23(6):831-40. PubMed ID: 16973435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Productive folding to the native state by a group II intron ribozyme.
    Swisher JF; Su LJ; Brenowitz M; Anderson VE; Pyle AM
    J Mol Biol; 2002 Jan; 315(3):297-310. PubMed ID: 11786013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A folding control element for tertiary collapse of a group II intron ribozyme.
    Waldsich C; Pyle AM
    Nat Struct Mol Biol; 2007 Jan; 14(1):37-44. PubMed ID: 17143279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sculpting of the spliceosomal branch site recognition motif by a conserved pseudouridine.
    Newby MI; Greenbaum NL
    Nat Struct Biol; 2002 Dec; 9(12):958-65. PubMed ID: 12426583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) with the group I intron P4-P6 domain. Thermodynamic analysis and the role of metal ions.
    Caprara MG; Myers CA; Lambowitz AM
    J Mol Biol; 2001 Apr; 308(2):165-90. PubMed ID: 11327760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal ion-N7 coordination in a ribozyme branch domain by NMR.
    Erat MC; Kovacs H; Sigel RK
    J Inorg Biochem; 2010 May; 104(5):611-3. PubMed ID: 20170966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core.
    Myers CA; Wallweber GJ; Rennard R; Kemel Y; Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Sep; 262(2):87-104. PubMed ID: 8831782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tertiary interaction that links active-site domains to the 5' splice site of a group II intron.
    Boudvillain M; de Lencastre A; Pyle AM
    Nature; 2000 Jul; 406(6793):315-8. PubMed ID: 10917534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA splicing: group I intron crystal structures reveal the basis of splice site selection and metal ion catalysis.
    Stahley MR; Strobel SA
    Curr Opin Struct Biol; 2006 Jun; 16(3):319-26. PubMed ID: 16697179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple tertiary interactions involving domain II of group II self-splicing introns.
    Costa M; Déme E; Jacquier A; Michel F
    J Mol Biol; 1997 Apr; 267(3):520-36. PubMed ID: 9126835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A peripheral element assembles the compact core structure essential for group I intron self-splicing.
    Xiao M; Li T; Yuan X; Shang Y; Wang F; Chen S; Zhang Y
    Nucleic Acids Res; 2005; 33(14):4602-11. PubMed ID: 16100381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual metal specificity and structure of the group I ribozyme from Chlamydomonas reinhardtii 23S rRNA.
    Kuo TC; Odom OW; Herrin DL
    FEBS J; 2006 Jun; 273(12):2631-44. PubMed ID: 16817892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-splicing of a Podospora anserina group IIA intron in vitro. Effects of 3'-terminal intron alterations on cleavage at the 5' and 3' splice site.
    Schmidt U; Sägebarth R; Schmelzer C; Stahl U
    J Mol Biol; 1993 Jun; 231(3):559-68. PubMed ID: 8515440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divalent metal ions promote the formation of the 5'-splice site recognition complex in a self-splicing group II intron.
    Kruschel D; Sigel RK
    J Inorg Biochem; 2008 Dec; 102(12):2147-54. PubMed ID: 18842303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.