BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 17201422)

  • 21. Nanodiamond-polymer composite fibers and coatings.
    Behler KD; Stravato A; Mochalin V; Korneva G; Yushin G; Gogotsi Y
    ACS Nano; 2009 Feb; 3(2):363-9. PubMed ID: 19236073
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of detonation nanodiamonds on phagocyte activity.
    Karpukhin AV; Avkhacheva NV; Yakovlev RY; Kulakova II; Yashin VA; Lisichkin GV; Safronova VG
    Cell Biol Int; 2011 Jul; 35(7):727-33. PubMed ID: 21155712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peptide-grafted nanodiamonds: preparation, cytotoxicity and uptake in cells.
    Vial S; Mansuy C; Sagan S; Irinopoulou T; Burlina F; Boudou JP; Chassaing G; Lavielle S
    Chembiochem; 2008 Sep; 9(13):2113-9. PubMed ID: 18677739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and characterization of novel fluorescent nanocomposite particles: CdSe/ZnS core-shell quantum dots loaded solid lipid nanoparticles.
    Liu W; He Z; Liang J; Zhu Y; Xu H; Yang X
    J Biomed Mater Res A; 2008 Mar; 84(4):1018-25. PubMed ID: 17668863
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new approach to the toxicity testing of carbon-based nanomaterials--the clonogenic assay.
    Herzog E; Casey A; Lyng FM; Chambers G; Byrne HJ; Davoren M
    Toxicol Lett; 2007 Nov; 174(1-3):49-60. PubMed ID: 17920791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles.
    Shimkunas RA; Robinson E; Lam R; Lu S; Xu X; Zhang XQ; Huang H; Osawa E; Ho D
    Biomaterials; 2009 Oct; 30(29):5720-8. PubMed ID: 19635632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of recombinant rotavirus VP6 nanotubes as a multifunctional template for the synthesis of nanobiomaterials functionalized with metals.
    Plascencia-Villa G; Saniger JM; Ascencio JA; Palomares LA; Ramírez OT
    Biotechnol Bioeng; 2009 Dec; 104(5):871-81. PubMed ID: 19655393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A facile and scalable process for size-controllable separation of nanodiamond particles as small as 4 nm.
    Morita Y; Takimoto T; Yamanaka H; Kumekawa K; Morino S; Aonuma S; Kimura T; Komatsu N
    Small; 2008 Dec; 4(12):2154-7. PubMed ID: 18989864
    [No Abstract]   [Full Text] [Related]  

  • 29. Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation.
    Guo D; Wu C; Jiang H; Li Q; Wang X; Chen B
    J Photochem Photobiol B; 2008 Dec; 93(3):119-26. PubMed ID: 18774727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Carbon nanotubes (CNT) and nanoparticles (NP): interaction with lung epithelium and other biological systems].
    Magrini A; Bergamaschi A; Bergamaschi E
    G Ital Med Lav Ergon; 2006; 28(3):266-9. PubMed ID: 17144414
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes.
    Yan L; Zhao F; Li S; Hu Z; Zhao Y
    Nanoscale; 2011 Feb; 3(2):362-82. PubMed ID: 21157592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deaggregation of nanodiamond powders using salt- and sugar-assisted milling.
    Pentecost A; Gour S; Mochalin V; Knoke I; Gogotsi Y
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3289-94. PubMed ID: 21043470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon encapsulated magnetic nanoparticles for biomedical applications: thermal stability studies.
    Bystrzejewski M; Cudziło S; Huczko A; Lange H; Soucy G; Cota-Sanchez G; Kaszuwara W
    Biomol Eng; 2007 Nov; 24(5):555-8. PubMed ID: 17855165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactions of aluminum nanoparticles with human epidermal keratinocytes.
    Monteiro-Riviere NA; Oldenburg SJ; Inman AO
    J Appl Toxicol; 2010 Apr; 30(3):276-85. PubMed ID: 20013751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytotoxicity and genotoxicity of silver nanoparticles in human cells.
    AshaRani PV; Low Kah Mun G; Hande MP; Valiyaveettil S
    ACS Nano; 2009 Feb; 3(2):279-90. PubMed ID: 19236062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon-dots derived from nanodiamond: photoluminescence tunable nanoparticles for cell imaging.
    Zhang X; Wang S; Zhu C; Liu M; Ji Y; Feng L; Tao L; Wei Y
    J Colloid Interface Sci; 2013 May; 397():39-44. PubMed ID: 23484769
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wet chemistry route to hydrophobic blue fluorescent nanodiamond.
    Mochalin VN; Gogotsi Y
    J Am Chem Soc; 2009 Apr; 131(13):4594-5. PubMed ID: 19290627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-frequency Raman and Brillouin spectroscopy from graphite, diamond and diamond-like carbons, fullerenes and nanotubes.
    Beghi MG; Bottani CE
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2513-35. PubMed ID: 15482989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Processing and characterization of gold nanoparticles for use in plasmon probe spectroscopy and microscopy of biosystems.
    Chen Y; Preece JA; Palmer RE
    Ann N Y Acad Sci; 2008; 1130():201-6. PubMed ID: 18596349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon nanotube and gold-based materials: a symbiosis.
    Singh R; Premkumar T; Shin JY; Geckeler KE
    Chemistry; 2010 Feb; 16(6):1728-43. PubMed ID: 20087910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.