BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 17202027)

  • 1. The effects of sediment-laden waters on irrigated lands along the lower Yellow River in China.
    Mingzhou Q; Jackson RH; Zhongjin Y; Jackson MW; Bo S
    J Environ Manage; 2007 Dec; 85(4):858-65. PubMed ID: 17202027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The source and fate of sediment and mercury in the Tapajós River, Pará, Brazilian Amazon: Ground- and space-based evidence.
    Telmer K; Costa M; Simões Angélica R; Araujo ES; Maurice Y
    J Environ Manage; 2006 Oct; 81(2):101-13. PubMed ID: 16824670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of high levels of total suspended solids on measurement of COD and BOD in the Yellow River, China.
    Jingsheng C; Tao Y; Ongley E
    Environ Monit Assess; 2006 May; 116(1-3):321-34. PubMed ID: 16779599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geochemical characteristics and fluxes of organic carbon in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China.
    Zhang S; Lu XX; Sun H; Han J; Higgitt DL
    Sci Total Environ; 2009 Jan; 407(2):815-25. PubMed ID: 19004473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China.
    Zheng N; Wang Q; Liang Z; Zheng D
    Environ Pollut; 2008 Jul; 154(1):135-42. PubMed ID: 18280624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture.
    Qadir M; Oster JD
    Sci Total Environ; 2004 May; 323(1-3):1-19. PubMed ID: 15081713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sediment flux to the sea as influenced by changing human activities and precipitation: example of the Yellow River, China.
    Jiongxin X
    Environ Manage; 2003 Mar; 31(3):328-41. PubMed ID: 12592448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of phthalic acid esters in Wuhan section of the Yangtze River, China.
    Wang F; Xia X; Sha Y
    J Hazard Mater; 2008 Jun; 154(1-3):317-24. PubMed ID: 18037235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental occurrence and distribution of short chain chlorinated paraffins in sediments and soils from the Liaohe River Basin, P. R. China.
    Gao Y; Zhang H; Su F; Tian Y; Chen J
    Environ Sci Technol; 2012 Apr; 46(7):3771-8. PubMed ID: 22397546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of coastal marine eco-environment to river fluxes into the sea: a case study of the Huanghe (Yellow) River mouth and adjacent waters.
    Fan H; Huang H
    Mar Environ Res; 2008 Jun; 65(5):378-87. PubMed ID: 18325584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relocation of the Yellow River as revealed by sedimentary isotopic and elemental signals in the East China Sea.
    Yang W; Chen M; Li G; Cao J; Guo Z; Ma Q; Liu J; Yang J
    Mar Pollut Bull; 2009 Jun; 58(6):923-7. PubMed ID: 19376536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metals in the surface sediments in Lanzhou Reach of Yellow River, China.
    Liu C; Xu J; Liu C; Zhang P; Dai M
    Bull Environ Contam Toxicol; 2009 Jan; 82(1):26-30. PubMed ID: 18806907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The integrated project AquaTerra of the EU sixth framework lays foundations for better understanding of river-sediment-soil-groundwater systems.
    Gerzabek MH; Barceló D; Bellin A; Rijnaarts HH; Slob A; Darmendrail D; Fowler HJ; Négrel P; Frank E; Grathwohl P; Kuntz D; Barth JA
    J Environ Manage; 2007 Jul; 84(2):237-43. PubMed ID: 17166649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term monitoring (1960-2008) of the river-sediment transport in the Red River Watershed (Vietnam): temporal variability and dam-reservoir impact.
    Dang TH; Coynel A; Orange D; Blanc G; Etcheber H; Le LA
    Sci Total Environ; 2010 Sep; 408(20):4654-64. PubMed ID: 20673966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suspended sediment estimation and analysis in river basins with rice paddy fields.
    Lapong E; Fujihara M; Izumi T; Hamagami K; Kakihara T; Kobayashi N
    Water Sci Technol; 2012; 66(5):918-26. PubMed ID: 22797217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sediment and phosphorus transport in irrigation furrows.
    Bjorneberg DL; Westermann DT; Aase JK; Clemmens AJ; Strelkoff TS
    J Environ Qual; 2006; 35(3):786-94. PubMed ID: 16585621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of land-use pattern change on rainfall-runoff and runoff-sediment relations: a case study in Zichang watershed of the Loess Plateau of China.
    Zhao WW; Fu BJ; Meng QH; Zhang QJ; Zhang YH
    J Environ Sci (China); 2004; 16(3):436-42. PubMed ID: 15272719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water environmental degradation of the Heihe River Basin in arid northwestern China.
    Qi SZ; Luo F
    Environ Monit Assess; 2005 Sep; 108(1-3):205-15. PubMed ID: 16160787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of suspended sediment concentrations using Terra MODIS: an example from the Lower Yangtze River, China.
    Wang JJ; Lu XX
    Sci Total Environ; 2010 Feb; 408(5):1131-8. PubMed ID: 20022078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estuarine behaviour of metal loads leached from coastal lowland acid sulphate soils.
    Nordmyr L; Osterholm P; Aström M
    Mar Environ Res; 2008 Sep; 66(3):378-93. PubMed ID: 18657315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.