These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 17202125)

  • 1. Functional genomics of abiotic stress tolerance in cereals.
    Langridge P; Paltridge N; Fincher G
    Brief Funct Genomic Proteomic; 2006 Feb; 4(4):343-54. PubMed ID: 17202125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches.
    Sreenivasulu N; Sopory SK; Kavi Kishor PB
    Gene; 2007 Feb; 388(1-2):1-13. PubMed ID: 17134853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development and application of molecular markers for abiotic stress tolerance in barley.
    Forster BP; Ellis RP; Thomas WT; Newton AC; Tuberosa R; This D; el-Enein RA; Bahri MH; Ben Salem M
    J Exp Bot; 2000 Jan; 51(342):19-27. PubMed ID: 10938792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses.
    Kant P; Gordon M; Kant S; Zolla G; Davydov O; Heimer YM; Chalifa-Caspi V; Shaked R; Barak S
    Plant Cell Environ; 2008 Jun; 31(6):697-714. PubMed ID: 18182014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling abiotic stress tolerance mechanisms--getting genomics going.
    Bohnert HJ; Gong Q; Li P; Ma S
    Curr Opin Plant Biol; 2006 Apr; 9(2):180-8. PubMed ID: 16458043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings.
    Kobayashi F; Maeta E; Terashima A; Takumi S
    Physiol Plant; 2008 Sep; 134(1):74-86. PubMed ID: 18433415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic and genomic tools to improve drought tolerance in wheat.
    Fleury D; Jefferies S; Kuchel H; Langridge P
    J Exp Bot; 2010 Jul; 61(12):3211-22. PubMed ID: 20525798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on plant abiotic stress responses in the post-genome era: past, present and future.
    Hirayama T; Shinozaki K
    Plant J; 2010 Mar; 61(6):1041-52. PubMed ID: 20409277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospectives for applying molecular and genetic methodology to improve wheat cultivars in drought environments.
    Zhao CX; Guo LY; Jaleel CA; Shao HB; Yang HB
    C R Biol; 2008 Aug; 331(8):579-86. PubMed ID: 18606387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethylene responsive element binding protein 1 (StEREBP1) from Solanum tuberosum increases tolerance to abiotic stress in transgenic potato plants.
    Lee HE; Shin D; Park SR; Han SE; Jeong MJ; Kwon TR; Lee SK; Park SC; Yi BY; Kwon HB; Byun MO
    Biochem Biophys Res Commun; 2007 Feb; 353(4):863-8. PubMed ID: 17207469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging trends in the functional genomics of the abiotic stress response in crop plants.
    Vij S; Tyagi AK
    Plant Biotechnol J; 2007 May; 5(3):361-80. PubMed ID: 17430544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice.
    Oh SJ; Kwon CW; Choi DW; Song SI; Kim JK
    Plant Biotechnol J; 2007 Sep; 5(5):646-56. PubMed ID: 17614953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transgenic crops coping with water scarcity.
    Cominelli E; Tonelli C
    N Biotechnol; 2010 Nov; 27(5):473-7. PubMed ID: 20723623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants.
    Zhou QY; Tian AG; Zou HF; Xie ZM; Lei G; Huang J; Wang CM; Wang HW; Zhang JS; Chen SY
    Plant Biotechnol J; 2008 Jun; 6(5):486-503. PubMed ID: 18384508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of genomics to molecular breeding of wheat and barley.
    Varshney RK; Langridge P; Graner A
    Adv Genet; 2007; 58():121-55. PubMed ID: 17452248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approaches to increasing the salt tolerance of wheat and other cereals.
    Munns R; James RA; Läuchli A
    J Exp Bot; 2006; 57(5):1025-43. PubMed ID: 16510517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Revealing hereditary variation of winter hardiness in cereals].
    Netsvetaev VP; Netsvetaeva OV
    Genetika; 2004 Nov; 40(11):1502-8. PubMed ID: 15612569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding regulatory networks and engineering for enhanced drought tolerance in plants.
    Valliyodan B; Nguyen HT
    Curr Opin Plant Biol; 2006 Apr; 9(2):189-95. PubMed ID: 16483835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress.
    Walia H; Wilson C; Condamine P; Liu X; Ismail AM; Close TJ
    Plant Cell Environ; 2007 Apr; 30(4):410-21. PubMed ID: 17324228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses.
    Jia XY; Xu CY; Jing RL; Li RZ; Mao XG; Wang JP; Chang XP
    J Exp Bot; 2008; 59(4):739-51. PubMed ID: 18349049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.