These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 17202148)
1. Identification of the extracellular matrix (ECM) binding motifs of tissue inhibitor of metalloproteinases (TIMP)-3 and effective transfer to TIMP-1. Lee MH; Atkinson S; Murphy G J Biol Chem; 2007 Mar; 282(9):6887-98. PubMed ID: 17202148 [TBL] [Abstract][Full Text] [Related]
2. Threonine 98, the pivotal residue of tissue inhibitor of metalloproteinases (TIMP)-1 in metalloproteinase recognition. Lee MH; Rapti M; Knaüper V; Murphy G J Biol Chem; 2004 Apr; 279(17):17562-9. PubMed ID: 14734567 [TBL] [Abstract][Full Text] [Related]
3. Structural and functional insights into the interaction of sulfated glycosaminoglycans with tissue inhibitor of metalloproteinase-3 - A possible regulatory role on extracellular matrix homeostasis. Rother S; Samsonov SA; Hofmann T; Blaszkiewicz J; Köhling S; Moeller S; Schnabelrauch M; Rademann J; Kalkhof S; von Bergen M; Pisabarro MT; Scharnweber D; Hintze V Acta Biomater; 2016 Nov; 45():143-154. PubMed ID: 27545813 [TBL] [Abstract][Full Text] [Related]
4. Dissecting the interaction between tissue inhibitor of metalloproteinases-3 (TIMP-3) and low density lipoprotein receptor-related protein-1 (LRP-1): Development of a "TRAP" to increase levels of TIMP-3 in the tissue. Scilabra SD; Yamamoto K; Pigoni M; Sakamoto K; Müller SA; Papadopoulou A; Lichtenthaler SF; Troeberg L; Nagase H; Kadomatsu K Matrix Biol; 2017 May; 59():69-79. PubMed ID: 27476612 [TBL] [Abstract][Full Text] [Related]
5. Unveiling the surface epitopes that render tissue inhibitor of metalloproteinase-1 inactive against membrane type 1-matrix metalloproteinase. Lee MH; Rapti M; Murphy G J Biol Chem; 2003 Oct; 278(41):40224-30. PubMed ID: 12869573 [TBL] [Abstract][Full Text] [Related]
6. Directed evolution of the metalloproteinase inhibitor TIMP-1 reveals that its N- and C-terminal domains cooperate in matrix metalloproteinase recognition. Raeeszadeh-Sarmazdeh M; Greene KA; Sankaran B; Downey GP; Radisky DC; Radisky ES J Biol Chem; 2019 Jun; 294(24):9476-9488. PubMed ID: 31040180 [TBL] [Abstract][Full Text] [Related]
7. Control of extracellular matrix homeostasis of normal cartilage by a TGFbeta autocrine pathway. Validation of flow cytometry as a tool to study chondrocyte metabolism in vitro. Wang L; Almqvist KF; Veys EM; Verbruggen G Osteoarthritis Cartilage; 2002 Mar; 10(3):188-98. PubMed ID: 11869079 [TBL] [Abstract][Full Text] [Related]
8. TIMP-3 inhibits the procollagen N-proteinase ADAMTS-2. Wang WM; Ge G; Lim NH; Nagase H; Greenspan DS Biochem J; 2006 Sep; 398(3):515-9. PubMed ID: 16771712 [TBL] [Abstract][Full Text] [Related]
9. Tissue inhibitors of metalloproteinases (TIMP) in invasion and proliferation. Henriet P; Blavier L; Declerck YA APMIS; 1999 Jan; 107(1):111-9. PubMed ID: 10190287 [TBL] [Abstract][Full Text] [Related]
10. The role of TIMPs in regulation of extracellular matrix proteolysis. Arpino V; Brock M; Gill SE Matrix Biol; 2015; 44-46():247-54. PubMed ID: 25805621 [TBL] [Abstract][Full Text] [Related]
11. Association of a high activity of matrix metalloproteinase-9 to low levels of tissue inhibitors of metalloproteinase-1 and -3 in human hepatitis B-viral hepatoma cells. Kim JR; Kim CH Int J Biochem Cell Biol; 2004 Nov; 36(11):2293-306. PubMed ID: 15313474 [TBL] [Abstract][Full Text] [Related]
12. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Gomez DE; Alonso DF; Yoshiji H; Thorgeirsson UP Eur J Cell Biol; 1997 Oct; 74(2):111-22. PubMed ID: 9352216 [TBL] [Abstract][Full Text] [Related]
13. Human tissue inhibitor of metalloproteinases 3 interacts with both the N- and C-terminal domains of gelatinases A and B. Regulation by polyanions. Butler GS; Apte SS; Willenbrock F; Murphy G J Biol Chem; 1999 Apr; 274(16):10846-51. PubMed ID: 10196161 [TBL] [Abstract][Full Text] [Related]
14. Localization of the functional domains of human tissue inhibitor of metalloproteinases-3 and the effects of a Sorsby's fundus dystrophy mutation. Langton KP; Barker MD; McKie N J Biol Chem; 1998 Jul; 273(27):16778-81. PubMed ID: 9642234 [TBL] [Abstract][Full Text] [Related]
15. TIMP-3 facilitates binding of target metalloproteinases to the endocytic receptor LRP-1 and promotes scavenging of MMP-1. Carreca AP; Pravatà VM; Markham M; Bonelli S; Murphy G; Nagase H; Troeberg L; Scilabra SD Sci Rep; 2020 Jul; 10(1):12067. PubMed ID: 32694578 [TBL] [Abstract][Full Text] [Related]
16. Metalloproteinase and inhibitor expression profiling of resorbing cartilage reveals pro-collagenase activation as a critical step for collagenolysis. Milner JM; Rowan AD; Cawston TE; Young DA Arthritis Res Ther; 2006; 8(5):R142. PubMed ID: 16919164 [TBL] [Abstract][Full Text] [Related]
17. Matrix metalloproteinases and their inhibitors regulate in vitro ureteric bud branching morphogenesis. Pohl M; Sakurai H; Bush KT; Nigam SK Am J Physiol Renal Physiol; 2000 Nov; 279(5):F891-900. PubMed ID: 11053050 [TBL] [Abstract][Full Text] [Related]
18. TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). Kashiwagi M; Tortorella M; Nagase H; Brew K J Biol Chem; 2001 Apr; 276(16):12501-4. PubMed ID: 11278243 [TBL] [Abstract][Full Text] [Related]
19. Functional characterization of tissue inhibitor of metalloproteinase-1 (TIMP-1) N- and C-terminal domains during Xenopus laevis development. Nieuwesteeg MA; Willson JA; Cepeda M; Fox MA; Damjanovski S ScientificWorldJournal; 2014; 2014():467907. PubMed ID: 24616631 [TBL] [Abstract][Full Text] [Related]