These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 17202475)

  • 1. Synaptic protein dynamics in hibernation.
    von der Ohe CG; Garner CC; Darian-Smith C; Heller HC
    J Neurosci; 2007 Jan; 27(1):84-92. PubMed ID: 17202475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ubiquitous and temperature-dependent neural plasticity in hibernators.
    von der Ohe CG; Darian-Smith C; Garner CC; Heller HC
    J Neurosci; 2006 Oct; 26(41):10590-8. PubMed ID: 17035545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics in the ultrastructure of asymmetric axospinous synapses in the frontal cortex of hibernating European ground squirrels (Spermophilus citellus).
    Ruediger J; Van der Zee EA; Strijkstra AM; Aschoff A; Daan S; Hut RA
    Synapse; 2007 May; 61(5):343-52. PubMed ID: 17318885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perineuronal net expression in the brain of a hibernating mammal.
    Marchand A; Schwartz C
    Brain Struct Funct; 2020 Jan; 225(1):45-56. PubMed ID: 31748912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kidney proteome changes provide evidence for a dynamic metabolism and regional redistribution of plasma proteins during torpor-arousal cycles of hibernation.
    Jani A; Orlicky DJ; Karimpour-Fard A; Epperson LE; Russell RL; Hunter LE; Martin SL
    Physiol Genomics; 2012 Jul; 44(14):717-27. PubMed ID: 22643061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The actin-binding protein profilin I is localized at synaptic sites in an activity-regulated manner.
    Neuhoff H; Sassoè-Pognetto M; Panzanelli P; Maas C; Witke W; Kneussel M
    Eur J Neurosci; 2005 Jan; 21(1):15-25. PubMed ID: 15654839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal protein changes support rapid energy production in hibernator brainstem.
    Epperson LE; Rose JC; Russell RL; Nikrad MP; Carey HV; Martin SL
    J Comp Physiol B; 2010 Apr; 180(4):599-617. PubMed ID: 19967378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extensive use of torpor in 13-lined ground squirrels in the fall prior to cold exposure.
    Russell RL; O'Neill PH; Epperson LE; Martin SL
    J Comp Physiol B; 2010 Nov; 180(8):1165-72. PubMed ID: 20556614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifications of the axon initial segment during the hibernation of the Syrian hamster.
    León-Espinosa G; Antón-Fernández A; Tapia-González S; DeFelipe J; Muñoz A
    Brain Struct Funct; 2018 Dec; 223(9):4307-4321. PubMed ID: 30219944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals.
    Arendt T; Stieler J; Strijkstra AM; Hut RA; Rüdiger J; Van der Zee EA; Harkany T; Holzer M; Härtig W
    J Neurosci; 2003 Aug; 23(18):6972-81. PubMed ID: 12904458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Torpor enhances synaptic strength and restores memory performance in a mouse model of Alzheimer's disease.
    de Veij Mestdagh CF; Timmerman JA; Koopmans F; Paliukhovich I; Miedema SSM; Goris M; van der Loo RJ; Krenning G; Li KW; Mansvelder HD; Smit AB; Henning RH; van Kesteren RE
    Sci Rep; 2021 Jul; 11(1):15486. PubMed ID: 34326412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hibernation-induced structural changes in synaptic contacts between mossy fibres and hippocampal pyramidal neurons.
    Popov VI; Bocharova LS
    Neuroscience; 1992; 48(1):53-62. PubMed ID: 1584425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Torpor Does Not Influence Spatial Memory in Hibernating Golden-Mantled Ground Squirrels (
    Hensleigh E; Murtishaw AS; Treat MD; Heaney CF; Bolton MM; Sabbagh JJ; Calvin KN; Kinney JW; van Breukelen F
    Physiol Biochem Zool; 2022; 95(5):390-399. PubMed ID: 35930827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal and regional differences in gene expression in the brain of a hibernating mammal.
    Schwartz C; Hampton M; Andrews MT
    PLoS One; 2013; 8(3):e58427. PubMed ID: 23526982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melatonin receptor signaling contributes to neuroprotection upon arousal from torpor in thirteen-lined ground squirrels.
    Schwartz C; Ballinger MA; Andrews MT
    Am J Physiol Regul Integr Comp Physiol; 2015 Nov; 309(10):R1292-300. PubMed ID: 26354846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable oxidative stress and tissue specificity in major tissues during the torpor-arousal cycle in hibernating Daurian ground squirrels.
    Wei Y; Zhang J; Xu S; Peng X; Yan X; Li X; Wang H; Chang H; Gao Y
    Open Biol; 2018 Oct; 8(10):. PubMed ID: 30305429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression in the brain across the hibernation cycle.
    O'Hara BF; Watson FL; Srere HK; Kumar H; Wiler SW; Welch SK; Bitting L; Heller HC; Kilduff TS
    J Neurosci; 1999 May; 19(10):3781-90. PubMed ID: 10234010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arousal from Torpor Increases Oxidative Damage in the Hibernating Thirteen-Lined Ground Squirrel (
    Duffy BM; Staples JF
    Physiol Biochem Zool; 2022; 95(3):229-238. PubMed ID: 35443147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of neuronal PKA signaling through AKAP targeting dynamics.
    Dell'Acqua ML; Smith KE; Gorski JA; Horne EA; Gibson ES; Gomez LL
    Eur J Cell Biol; 2006 Jul; 85(7):627-33. PubMed ID: 16504338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A(1) receptors.
    Jinka TR; Tøien Ø; Drew KL
    J Neurosci; 2011 Jul; 31(30):10752-8. PubMed ID: 21795527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.