BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 17202782)

  • 1. [Role of lipid rafts in trimeric G protein-mediated signal transduction].
    Ohkubo S; Nakahata N
    Yakugaku Zasshi; 2007 Jan; 127(1):27-40. PubMed ID: 17202782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caveolae and lipid rafts: G protein-coupled receptor signaling microdomains in cardiac myocytes.
    Insel PA; Head BP; Ostrom RS; Patel HH; Swaney JS; Tang CM; Roth DM
    Ann N Y Acad Sci; 2005 Jun; 1047():166-72. PubMed ID: 16093494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Lipid rafts and their analytical methods].
    Nakahata N; Ohkubo S
    Nihon Yakurigaku Zasshi; 2003 Nov; 122(5):419-25. PubMed ID: 14569161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mastoparan changes the cellular localization of Galphaq/11 and Gbeta through its binding to ganglioside in lipid rafts.
    Sugama J; Ohkubo S; Atsumi M; Nakahata N
    Mol Pharmacol; 2005 Nov; 68(5):1466-74. PubMed ID: 16118364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The G-protein on cholesterol-rich membrane microdomains mediates mucosal sensing of short- chain fatty acid and secretory response in rat colon.
    Yajima T; Inoue R; Yajima M; Tsuruta T; Karaki S; Hira T; Kuwahara A
    Acta Physiol (Oxf); 2011 Nov; 203(3):381-9. PubMed ID: 21649864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P2Y2 receptor-Gq/11 signaling at lipid rafts is required for UTP-induced cell migration in NG 108-15 cells.
    Ando K; Obara Y; Sugama J; Kotani A; Koike N; Ohkubo S; Nakahata N
    J Pharmacol Exp Ther; 2010 Sep; 334(3):809-19. PubMed ID: 20511347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mastoparan inhibits beta-adrenoceptor-G(s) signaling by changing the localization of Galpha(s) in lipid rafts.
    Sugama J; Yu JZ; Rasenick MM; Nakahata N
    Cell Signal; 2007 Nov; 19(11):2247-54. PubMed ID: 17692506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default.
    Oh P; Schnitzer JE
    Mol Biol Cell; 2001 Mar; 12(3):685-98. PubMed ID: 11251080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compartmentation of G-protein-coupled receptors and their signalling components in lipid rafts and caveolae.
    Insel PA; Head BP; Patel HH; Roth DM; Bundey RA; Swaney JS
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1131-4. PubMed ID: 16246064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of the kappa opioid receptor in lipid rafts.
    Xu W; Yoon SI; Huang P; Wang Y; Chen C; Chong PL; Liu-Chen LY
    J Pharmacol Exp Ther; 2006 Jun; 317(3):1295-306. PubMed ID: 16505160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingolipid-cholesterol domains (lipid rafts) in normal human and dog thyroid follicular cells are not involved in thyrotropin receptor signaling.
    Costa MJ; Song Y; Macours P; Massart C; Many MC; Costagliola S; Dumont JE; Van Sande J; Vanvooren V
    Endocrinology; 2004 Mar; 145(3):1464-72. PubMed ID: 14670987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caveolin-1 and lipid microdomains regulate Gs trafficking and attenuate Gs/adenylyl cyclase signaling.
    Allen JA; Yu JZ; Dave RH; Bhatnagar A; Roth BL; Rasenick MM
    Mol Pharmacol; 2009 Nov; 76(5):1082-93. PubMed ID: 19696145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains.
    Patel HH; Murray F; Insel PA
    Handb Exp Pharmacol; 2008; (186):167-84. PubMed ID: 18491052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology.
    Ostrom RS; Insel PA
    Br J Pharmacol; 2004 Sep; 143(2):235-45. PubMed ID: 15289291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Lipid rafts and heterotrimeric G proteins].
    Yuyama K; Sekino-Suzuki N; Kasahara K
    Tanpakushitsu Kakusan Koso; 2008 Sep; 53(12 Suppl):1558-63. PubMed ID: 21089366
    [No Abstract]   [Full Text] [Related]  

  • 16. Functional evidence for presence of lipid rafts in erythrocyte membranes: Gsalpha in rafts is essential for signal transduction.
    Kamata K; Manno S; Ozaki M; Takakuwa Y
    Am J Hematol; 2008 May; 83(5):371-5. PubMed ID: 18181202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caveolae facilitate but are not essential for platelet-activating factor-mediated calcium mobilization and extracellular signal-regulated kinase activation.
    Poisson C; Rollin S; Véronneau S; Bousquet SM; Larrivée JF; Le Gouill C; Boulay G; Stankova J; Rola-Pleszczynski M
    J Immunol; 2009 Aug; 183(4):2747-57. PubMed ID: 19620302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role for lipid rafts in regulating interleukin-2 receptor signaling.
    Marmor MD; Julius M
    Blood; 2001 Sep; 98(5):1489-97. PubMed ID: 11520799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization and signaling of GPCRs in lipid rafts.
    Villar VA; Cuevas S; Zheng X; Jose PA
    Methods Cell Biol; 2016; 132():3-23. PubMed ID: 26928536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling.
    Head BP; Patel HH; Insel PA
    Biochim Biophys Acta; 2014 Feb; 1838(2):532-45. PubMed ID: 23899502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.