BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 17202782)

  • 21. G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there?
    Chini B; Parenti M
    J Mol Endocrinol; 2004 Apr; 32(2):325-38. PubMed ID: 15072542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of the lateral association of phospholipase Cbeta2 and G protein subunits by lipid rafts.
    Scarlata S
    Biochemistry; 2002 Jun; 41(22):7092-9. PubMed ID: 12033943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insulin-like growth factor-1 receptor signaling in 3T3-L1 adipocyte differentiation requires lipid rafts but not caveolae.
    Hong S; Huo H; Xu J; Liao K
    Cell Death Differ; 2004 Jul; 11(7):714-23. PubMed ID: 15002041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationship between cholesterol trafficking and signaling in rafts and caveolae.
    Fielding CJ; Fielding PE
    Biochim Biophys Acta; 2003 Mar; 1610(2):219-28. PubMed ID: 12648776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A critical role of lipid rafts in the organization of a key FcgammaRIIa-mediated signaling pathway in human platelets.
    Bodin S; Viala C; Ragab A; Payrastre B
    Thromb Haemost; 2003 Feb; 89(2):318-30. PubMed ID: 12574813
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The rapid activation of N-Ras by alpha-thrombin in fibroblasts is mediated by the specific G-protein Galphai2-Gbeta1-Ggamma5 and occurs in lipid rafts.
    Lents NH; Irintcheva V; Goel R; Wheeler LW; Baldassare JJ
    Cell Signal; 2009 Jun; 21(6):1007-14. PubMed ID: 19250965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of membrane components in the binding of proteins to membrane surfaces.
    Philip F; Scarlata S
    Biochemistry; 2004 Sep; 43(37):11691-700. PubMed ID: 15362853
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The alpha1a-adrenergic receptor occupies membrane rafts with its G protein effectors but internalizes via clathrin-coated pits.
    Morris DP; Lei B; Wu YX; Michelotti GA; Schwinn DA
    J Biol Chem; 2008 Feb; 283(5):2973-85. PubMed ID: 18048357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipid rafts as major platforms for signaling regulation in cancer.
    Mollinedo F; Gajate C
    Adv Biol Regul; 2015 Jan; 57():130-46. PubMed ID: 25465296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of cytokine signaling in human retinal endothelial cells through modification of caveolae/lipid rafts by docosahexaenoic acid.
    Chen W; Jump DB; Esselman WJ; Busik JV
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):18-26. PubMed ID: 17197511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involvement of lipid rafts in multiple signal transductions mediated by two isoforms of thromboxane A₂ receptor: dependency on receptor isoforms and downstream signaling types.
    Goto S; Saito M; Obara Y; Moriya T; Nakahata N
    Eur J Pharmacol; 2012 Oct; 693(1-3):15-24. PubMed ID: 22963705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lipid rafts: bringing order to chaos.
    Pike LJ
    J Lipid Res; 2003 Apr; 44(4):655-67. PubMed ID: 12562849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. R7-binding protein targets the G protein beta 5/R7-regulator of G protein signaling complex to lipid rafts in neuronal cells and brain.
    Nini L; Waheed AA; Panicker LM; Czapiga M; Zhang JH; Simonds WF
    BMC Biochem; 2007 Sep; 8():18. PubMed ID: 17880698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vascular signaling through cholesterol-rich domains: implications in hypertension.
    Callera GE; Montezano AC; Yogi A; Tostes RC; Touyz RM
    Curr Opin Nephrol Hypertens; 2007 Mar; 16(2):90-104. PubMed ID: 17293683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic labelling of membrane microdomains/rafts in Jurkat cells indicates the presence of glycerophospholipids implicated in signal transduction by the CD3 T-cell receptor.
    Rouquette-Jazdanian AK; Pelassy C; Breittmayer JP; Cousin JL; Aussel C
    Biochem J; 2002 May; 363(Pt 3):645-55. PubMed ID: 11964165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detergent and detergent-free methods to define lipid rafts and caveolae.
    Ostrom RS; Liu X
    Methods Mol Biol; 2007; 400():459-68. PubMed ID: 17951752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. P-Glycoprotein is localized in intermediate-density membrane microdomains distinct from classical lipid rafts and caveolar domains.
    Radeva G; Perabo J; Sharom FJ
    FEBS J; 2005 Oct; 272(19):4924-37. PubMed ID: 16176266
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methods for the study of signaling molecules in membrane lipid rafts and caveolae.
    Ostrom RS; Insel PA
    Methods Mol Biol; 2006; 332():181-91. PubMed ID: 16878693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. G(s) signaling is intact after disruption of lipid rafts.
    Miura Y; Hanada K; Jones TL
    Biochemistry; 2001 Dec; 40(50):15418-23. PubMed ID: 11735426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of cholesterol and glycosylphosphatidylinositol-anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection.
    Samuel BU; Mohandas N; Harrison T; McManus H; Rosse W; Reid M; Haldar K
    J Biol Chem; 2001 Aug; 276(31):29319-29. PubMed ID: 11352913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.