BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 17203366)

  • 1. Incorporating partial matches within multi-objective pharmacophore identification.
    Cottrell SJ; Gillet VJ; Taylor R
    J Comput Aided Mol Des; 2006 Dec; 20(12):735-49. PubMed ID: 17203366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An extensive and diverse set of molecular overlays for the validation of pharmacophore programs.
    Giangreco I; Cosgrove DA; Packer MJ
    J Chem Inf Model; 2013 Apr; 53(4):852-66. PubMed ID: 23565904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiobjective optimization of pharmacophore hypotheses: bias toward low-energy conformations.
    Gardiner EJ; Cosgrove DA; Taylor R; Gillet VJ
    J Chem Inf Model; 2009 Dec; 49(12):2761-73. PubMed ID: 19908873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GALAHAD: 1. pharmacophore identification by hypermolecular alignment of ligands in 3D.
    Richmond NJ; Abrams CA; Wolohan PR; Abrahamian E; Willett P; Clark RD
    J Comput Aided Mol Des; 2006 Sep; 20(9):567-87. PubMed ID: 17051338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature-map vectors: a new class of informative descriptors for computational drug discovery.
    Landrum GA; Penzotti JE; Putta S
    J Comput Aided Mol Des; 2006 Dec; 20(12):751-62. PubMed ID: 17205374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual screening-driven identification of human carbonic anhydrase inhibitors incorporating an original, new pharmacophore.
    Pala N; Dallocchio R; Dessì A; Brancale A; Carta F; Ihm S; Maresca A; Sechi M; Supuran CT
    Bioorg Med Chem Lett; 2011 Apr; 21(8):2515-20. PubMed ID: 21420862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Interaction Hot Spots in Structures of Drug Targets on the Basis of Three-Dimensional Activity Cliff Information.
    Furtmann N; Hu Y; Gütschow M; Bajorath J
    Chem Biol Drug Des; 2015 Dec; 86(6):1458-65. PubMed ID: 26094578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacophore-based molecular docking to account for ligand flexibility.
    Joseph-McCarthy D; Thomas BE; Belmarsh M; Moustakas D; Alvarez JC
    Proteins; 2003 May; 51(2):172-88. PubMed ID: 12660987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of multiple pharmacophore hypotheses using multiobjective optimisation techniques.
    Cottrell SJ; Gillet VJ; Taylor R; Wilton DJ
    J Comput Aided Mol Des; 2004 Nov; 18(11):665-82. PubMed ID: 15865060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GRID-based three-dimensional pharmacophores I: FLAPpharm, a novel approach for pharmacophore elucidation.
    Cross S; Baroni M; Goracci L; Cruciani G
    J Chem Inf Model; 2012 Oct; 52(10):2587-98. PubMed ID: 22970894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Out of the active site binding pocket for carbonic anhydrase inhibitors.
    D'Ambrosio K; Carradori S; Monti SM; Buonanno M; Secci D; Vullo D; Supuran CT; De Simone G
    Chem Commun (Camb); 2015; 51(2):302-5. PubMed ID: 25407638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecule-pharmacophore superpositioning and pattern matching in computational drug design.
    Wolber G; Seidel T; Bendix F; Langer T
    Drug Discov Today; 2008 Jan; 13(1-2):23-9. PubMed ID: 18190860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of genetic algorithm-kernel partial least square as a novel nonlinear feature selection method: activity of carbonic anhydrase II inhibitors.
    Jalali-Heravi M; Kyani A
    Eur J Med Chem; 2007 May; 42(5):649-59. PubMed ID: 17316919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new synthesis of difluoromethanesulfonamides--a novel pharmacophore for carbonic anhydrase inhibition.
    Boyle NA; Chegwidden WR; Blackburn GM
    Org Biomol Chem; 2005 Jan; 3(2):222-4. PubMed ID: 15632962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A marriage made in torsional space: using GALAHAD models to drive pharmacophore multiplet searches.
    Shepphird JK; Clark RD
    J Comput Aided Mol Des; 2006 Dec; 20(12):763-71. PubMed ID: 17016746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A self-organizing algorithm for molecular alignment and pharmacophore development.
    Bandyopadhyay D; Agrafiotis DK
    J Comput Chem; 2008 Apr; 29(6):965-82. PubMed ID: 17999384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Combined Crystallographic and Theoretical Study Explains the Capability of Carboxylic Acids to Adopt Multiple Binding Modes in the Active Site of Carbonic Anhydrases.
    Langella E; D'Ambrosio K; D'Ascenzio M; Carradori S; Monti SM; Supuran CT; De Simone G
    Chemistry; 2016 Jan; 22(1):97-100. PubMed ID: 26507456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GRID-based three-dimensional pharmacophores II: PharmBench, a benchmark data set for evaluating pharmacophore elucidation methods.
    Cross S; Ortuso F; Baroni M; Costa G; Distinto S; Moraca F; Alcaro S; Cruciani G
    J Chem Inf Model; 2012 Oct; 52(10):2599-608. PubMed ID: 22970854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using pharmacophore models to gain insight into structural binding and virtual screening: an application study with CDK2 and human DHFR.
    Toba S; Srinivasan J; Maynard AJ; Sutter J
    J Chem Inf Model; 2006; 46(2):728-35. PubMed ID: 16563003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of pharmacophore similarity-based quantitative activity hypothesis and its applicability domain: applied on a diverse data-set of HIV-1 integrase inhibitors.
    Kumar SP; Jasrai YT; Mehta VP; Pandya HA
    J Biomol Struct Dyn; 2015; 33(4):706-22. PubMed ID: 24735019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.