BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17204465)

  • 21. Predicting internal exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames.
    Solovyev VV; Salamov AA; Lawrence CB
    Nucleic Acids Res; 1994 Dec; 22(24):5156-63. PubMed ID: 7816600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The prediction of exons through an analysis of spliceable open reading frames.
    Hutchinson GB; Hayden MR
    Nucleic Acids Res; 1992 Jul; 20(13):3453-62. PubMed ID: 1321415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Classification of splice-junction sequences via weighted position specific scoring approach.
    Nasibov E; Tunaboylu S
    Comput Biol Chem; 2010 Dec; 34(5-6):293-9. PubMed ID: 21056007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information.
    Hebsgaard SM; Korning PG; Tolstrup N; Engelbrecht J; Rouzé P; Brunak S
    Nucleic Acids Res; 1996 Sep; 24(17):3439-52. PubMed ID: 8811101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AnABlast: Re-searching for Protein-Coding Sequences in Genomic Regions.
    Rubio A; Casimiro-Soriguer CS; Mier P; Andrade-Navarro MA; Garzón A; Jimenez J; Pérez-Pulido AJ
    Methods Mol Biol; 2019; 1962():207-214. PubMed ID: 31020562
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of various algorithms for recognizing short coding sequences of human genes.
    Gao F; Zhang CT
    Bioinformatics; 2004 Mar; 20(5):673-81. PubMed ID: 14764563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PhyloGena--a user-friendly system for automated phylogenetic annotation of unknown sequences.
    Hanekamp K; Bohnebeck U; Beszteri B; Valentin K
    Bioinformatics; 2007 Apr; 23(7):793-801. PubMed ID: 17332025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational discovery of human coding and non-coding transcripts with conserved splice sites.
    Rose D; Hiller M; Schutt K; Hackermüller J; Backofen R; Stadler PF
    Bioinformatics; 2011 Jul; 27(14):1894-900. PubMed ID: 21622663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parallel cascade recognition of exon and intron DNA sequences.
    Korenberg MJ; Lipson ED; Green JR; Solomon JE
    Ann Biomed Eng; 2002 Jan; 30(1):129-40. PubMed ID: 11874136
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ancient evolutionary signals of protein-coding sequences allow the discovery of new genes in the Drosophila melanogaster genome.
    Casimiro-Soriguer CS; Rubio A; Jimenez J; Pérez-Pulido AJ
    BMC Genomics; 2020 Mar; 21(1):210. PubMed ID: 32138644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MED: a new non-supervised gene prediction algorithm for bacterial and archaeal genomes.
    Zhu H; Hu GQ; Yang YF; Wang J; She ZS
    BMC Bioinformatics; 2007 Mar; 8():97. PubMed ID: 17367537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coding exon-structure aware realigner (CESAR) utilizes genome alignments for accurate comparative gene annotation.
    Sharma V; Elghafari A; Hiller M
    Nucleic Acids Res; 2016 Jun; 44(11):e103. PubMed ID: 27016733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing.
    Maier RM; Neckermann K; Igloi GL; Kössel H
    J Mol Biol; 1995 Sep; 251(5):614-28. PubMed ID: 7666415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of protein coding regions by the 3-base periodicity analysis of a DNA sequence.
    Yin C; Yau SS
    J Theor Biol; 2007 Aug; 247(4):687-94. PubMed ID: 17509616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An unsupervised classification scheme for improving predictions of prokaryotic TIS.
    Tech M; Meinicke P
    BMC Bioinformatics; 2006 Mar; 7():121. PubMed ID: 16526950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accurate identification of alternatively spliced exons using support vector machine.
    Dror G; Sorek R; Shamir R
    Bioinformatics; 2005 Apr; 21(7):897-901. PubMed ID: 15531599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using MZEF to find internal coding exons.
    Zhang MQ
    Curr Protoc Bioinformatics; 2002 Aug; Chapter 4():Unit 4.2. PubMed ID: 18792940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multivariate entropy distance method for prokaryotic gene identification.
    Ouyang Z; Zhu H; Wang J; She ZS
    J Bioinform Comput Biol; 2004 Jun; 2(2):353-73. PubMed ID: 15297987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Origin of eukaryotic introns: a hypothesis, based on codon distribution statistics in genes, and its implications.
    Senapathy P
    Proc Natl Acad Sci U S A; 1986 Apr; 83(7):2133-7. PubMed ID: 3457379
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scipio: using protein sequences to determine the precise exon/intron structures of genes and their orthologs in closely related species.
    Keller O; Odronitz F; Stanke M; Kollmar M; Waack S
    BMC Bioinformatics; 2008 Jun; 9():278. PubMed ID: 18554390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.