These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17204483)

  • 1. Deinococcus radiodurans RNA ligase exemplifies a novel ligase clade with a distinctive N-terminal module that is important for 5'-PO4 nick sealing and ligase adenylylation but dispensable for phosphodiester formation at an adenylylated nick.
    Raymond A; Shuman S
    Nucleic Acids Res; 2007; 35(3):839-49. PubMed ID: 17204483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a novel eukaryal nick-sealing RNA ligase from Naegleria gruberi.
    Unciuleac MC; Shuman S
    RNA; 2015 May; 21(5):824-32. PubMed ID: 25740837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An RNA ligase from Deinococcus radiodurans.
    Martins A; Shuman S
    J Biol Chem; 2004 Dec; 279(49):50654-61. PubMed ID: 15333634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of the rnl gene encoding a nick-sealing RNA ligase sensitizes Deinococcus radiodurans to ionizing radiation.
    Schmier BJ; Chen X; Wolin S; Shuman S
    Nucleic Acids Res; 2017 Apr; 45(7):3812-3821. PubMed ID: 28126918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of 3'-OH and 5'-PO4 base mispairs and damaged base lesions on the fidelity of nick sealing by Deinococcus radiodurans RNA ligase.
    Schmier BJ; Shuman S
    J Bacteriol; 2014 May; 196(9):1704-12. PubMed ID: 24532777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of bacteriophage T4 RNA ligase 1. Different functional groups are required for the nucleotidyl transfer and phosphodiester bond formation steps of the ligation reaction.
    Wang LK; Ho CK; Pei Y; Shuman S
    J Biol Chem; 2003 Aug; 278(32):29454-62. PubMed ID: 12766156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and two-metal mechanism of a eukaryal nick-sealing RNA ligase.
    Unciuleac MC; Goldgur Y; Shuman S
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13868-73. PubMed ID: 26512110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of mimivirus NAD+-dependent DNA ligase.
    Benarroch D; Shuman S
    Virology; 2006 Sep; 353(1):133-43. PubMed ID: 16844179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How an RNA ligase discriminates RNA versus DNA damage.
    Nandakumar J; Shuman S
    Mol Cell; 2004 Oct; 16(2):211-21. PubMed ID: 15494308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional dissection of the DNA interface of the nucleotidyltransferase domain of chlorella virus DNA ligase.
    Samai P; Shuman S
    J Biol Chem; 2011 Apr; 286(15):13314-26. PubMed ID: 21335605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-guided mutational analysis of T4 RNA ligase 1.
    Wang LK; Schwer B; Shuman S
    RNA; 2006 Dec; 12(12):2126-34. PubMed ID: 17068206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caveat mutator: alanine substitutions for conserved amino acids in RNA ligase elicit unexpected rearrangements of the active site for lysine adenylylation.
    Unciuleac MC; Goldgur Y; Shuman S
    Nucleic Acids Res; 2020 Jun; 48(10):5603-5615. PubMed ID: 32315072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-function analysis of the kinase-CPD domain of yeast tRNA ligase (Trl1) and requirements for complementation of tRNA splicing by a plant Trl1 homolog.
    Wang LK; Schwer B; Englert M; Beier H; Shuman S
    Nucleic Acids Res; 2006; 34(2):517-27. PubMed ID: 16428247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA ligase structures reveal the basis for RNA specificity and conformational changes that drive ligation forward.
    Nandakumar J; Shuman S; Lima CD
    Cell; 2006 Oct; 127(1):71-84. PubMed ID: 17018278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains.
    Ho CK; Shuman S
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):12709-14. PubMed ID: 12228725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and mechanism of RNA ligase.
    Ho CK; Wang LK; Lima CD; Shuman S
    Structure; 2004 Feb; 12(2):327-39. PubMed ID: 14962393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a baculovirus enzyme with RNA ligase, polynucleotide 5'-kinase, and polynucleotide 3'-phosphatase activities.
    Martins A; Shuman S
    J Biol Chem; 2004 Apr; 279(18):18220-31. PubMed ID: 14747466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and mutational analysis of archaeal ATP-dependent RNA ligase identifies amino acids required for RNA binding and catalysis.
    Gu H; Yoshinari S; Ghosh R; Ignatochkina AV; Gollnick PD; Murakami KS; Ho CK
    Nucleic Acids Res; 2016 Mar; 44(5):2337-47. PubMed ID: 26896806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-function analysis of yeast tRNA ligase.
    Wang LK; Shuman S
    RNA; 2005 Jun; 11(6):966-75. PubMed ID: 15923379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymes involved in DNA ligation and end-healing in the radioresistant bacterium Deinococcus radiodurans.
    Blasius M; Buob R; Shevelev IV; Hubscher U
    BMC Mol Biol; 2007 Aug; 8():69. PubMed ID: 17705817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.