BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 17205035)

  • 1. S5 Lipase: an organic solvent tolerant enzyme.
    Rahman RN; Baharum SN; Salleh AB; Basri M
    J Microbiol; 2006 Dec; 44(6):583-90. PubMed ID: 17205035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Pseudomonas sp. BCNU 171 tolerant to organic solvents.
    Choi HJ; Kim SA; Kim DW; Moon JY; Jeong YK; Joo WH
    J Basic Microbiol; 2008 Dec; 48(6):473-9. PubMed ID: 18792055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5.
    Rahman RN; Baharum SN; Basri M; Salleh AB
    Anal Biochem; 2005 Jun; 341(2):267-74. PubMed ID: 15907872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tandem biodegradation of BTEX components by two Pseudomonas sp.
    Attaway HH; Schmidt MG
    Curr Microbiol; 2002 Jul; 45(1):30-6. PubMed ID: 12029524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A newly isolated organic solvent tolerant Staphylococcus saprophyticus M36 produced organic solvent-stable lipase.
    Fang Y; Lu Z; Lv F; Bie X; Liu S; Ding Z; Xu W
    Curr Microbiol; 2006 Dec; 53(6):510-5. PubMed ID: 17089221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metagenomic analysis of BTEX-contaminated forest soil microcosm.
    Ji SC; Kim D; Yoon JH; Lee CH
    J Microbiol Biotechnol; 2007 Apr; 17(4):668-72. PubMed ID: 18051281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons.
    Ramos JL; Duque E; Huertas MJ; Haïdour A
    J Bacteriol; 1995 Jul; 177(14):3911-6. PubMed ID: 7608060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of benzene-tolerant Rhodococcus opacus strains.
    Na KS; Kuroda A; Takiguchi N; Ikeda T; Ohtake H; Kato J
    J Biosci Bioeng; 2005 Apr; 99(4):378-82. PubMed ID: 16233805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of an organic solvent-tolerant bacterium Bacillus licheniformis PAL05 that is able to secrete solvent-stable lipase.
    Anbu P; Hur BK
    Biotechnol Appl Biochem; 2014; 61(5):528-34. PubMed ID: 24397298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of coconut oil cake for the production of lipase using Bacillus coagulans VKL1.
    Gowthami P; Muthukumar K; Velan M
    Biocontrol Sci; 2015; 20(2):125-33. PubMed ID: 26133510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2.
    Amoozegar MA; Salehghamari E; Khajeh K; Kabiri M; Naddaf S
    J Basic Microbiol; 2008 Jun; 48(3):160-7. PubMed ID: 18506896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Isolation and characterization of 4 benzene/toluene-degrading bacterial strains and detection of related degradation genes].
    Wang L; Shao ZZ
    Wei Sheng Wu Xue Bao; 2006 Oct; 46(5):753-7. PubMed ID: 17172023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of Deinococcus geothermalis T27, a slightly thermophilic and organic solvent-tolerant bacterium able to survive in the presence of high concentrations of ethyl acetate.
    Kongpol A; Kato J; Vangnai AS
    FEMS Microbiol Lett; 2008 Sep; 286(2):227-35. PubMed ID: 18647360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59.
    Kim JM; Le NT; Chung BS; Park JH; Bae JW; Madsen EL; Jeon CO
    Appl Environ Microbiol; 2008 Dec; 74(23):7313-20. PubMed ID: 18835999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of medium and process parameters for the production of lipase from an oil-tolerant Aspergillus sp. (RBD-01).
    Aulakh SS; Prakash R
    J Basic Microbiol; 2010 Feb; 50(1):37-42. PubMed ID: 20175121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new thermostable and organic solvent-tolerant lipase from Staphylococcus warneri; optimization of media and production conditions using statistical methods.
    Yele VU; Desai K
    Appl Biochem Biotechnol; 2015 Jan; 175(2):855-69. PubMed ID: 25344436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of culture conditions on cathepsin B inhibitor production by a marine bacterium, Pseudomonas sp. strain PB01.
    Hoang le TV; Kim MM; Kim SK
    J Microbiol Biotechnol; 2008 Jun; 18(6):1115-20. PubMed ID: 18600056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of a thermotolerant bacterium Ralstonia sp. strain PHS1 that degrades benzene, toluene, ethylbenzene, and o-xylene.
    Lee SK; Lee SB
    Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):270-5. PubMed ID: 11499943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of an extracellular alkaline lipase from Pseudomonas mendocina M-37.
    Dahiya P; Arora P; Chaudhury A; Chand S; Dilbaghi N
    J Basic Microbiol; 2010 Oct; 50(5):420-6. PubMed ID: 20586067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production and properties of an alkaline, thermophilic lipase from Pseudomonas fluorescens NS2W.
    Kulkarni N; Gadre RV
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):344-8. PubMed ID: 12032808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.