BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 17205287)

  • 1. Towards a new age in the treatment of multiple myeloma.
    Piazza FA; Gurrieri C; Trentin L; Semenzato G
    Ann Hematol; 2007 Mar; 86(3):159-72. PubMed ID: 17205287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms of novel therapeutic approaches for multiple myeloma.
    Hideshima T; Anderson KC
    Nat Rev Cancer; 2002 Dec; 2(12):927-37. PubMed ID: 12459731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the phosphatidylinositol 3-kinase pathway in multiple myeloma.
    Younes H; Leleu X; Hatjiharissi E; Moreau AS; Hideshima T; Richardson P; Anderson KC; Ghobrial IM
    Clin Cancer Res; 2007 Jul; 13(13):3771-5. PubMed ID: 17606706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel therapeutic strategies targeting growth factor signalling cascades in multiple myeloma.
    Yasui H; Hideshima T; Richardson PG; Anderson KC
    Br J Haematol; 2006 Feb; 132(4):385-97. PubMed ID: 16412014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the vascular endothelial growth factor pathway in the treatment of multiple myeloma.
    Podar K; Richardson PG; Chauhan D; Anderson KC
    Expert Rev Anticancer Ther; 2007 Apr; 7(4):551-66. PubMed ID: 17428175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of apoptosis in human multiple myeloma by insulin-like growth factor I (IGF-I).
    Jernberg-Wiklund H; Nilsson K
    Adv Cancer Res; 2007; 97():139-65. PubMed ID: 17419944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted therapy of multiple myeloma based upon tumor-microenvironmental interactions.
    Anderson KC
    Exp Hematol; 2007 Apr; 35(4 Suppl 1):155-62. PubMed ID: 17379101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Intracellular Signaling Pathways in the Pathogenesis of Multiple Myeloma and Novel Therapeutic Approaches.
    Kizaki M; Tabayashi T
    J Clin Exp Hematop; 2016; 56(1):20-7. PubMed ID: 27334854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of interleukin-6 signaling with CNTO 328 enhances the activity of bortezomib in preclinical models of multiple myeloma.
    Voorhees PM; Chen Q; Kuhn DJ; Small GW; Hunsucker SA; Strader JS; Corringham RE; Zaki MH; Nemeth JA; Orlowski RZ
    Clin Cancer Res; 2007 Nov; 13(21):6469-78. PubMed ID: 17975159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signalling and survival pathways in multiple myeloma.
    Bommert K; Bargou RC; Stühmer T
    Eur J Cancer; 2006 Jul; 42(11):1574-80. PubMed ID: 16797970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics, pathogenesis, and novel treatments for multiple myeloma.
    San Miguel J
    J Natl Compr Canc Netw; 2004 Nov; 2 Suppl 4():S1-4. PubMed ID: 19791422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Canonical nuclear factor kappaB pathway inhibition blocks myeloma cell growth and induces apoptosis in strong synergy with TRAIL.
    Romagnoli M; Desplanques G; Maïga S; Legouill S; Dreano M; Bataille R; Barillé-Nion S
    Clin Cancer Res; 2007 Oct; 13(20):6010-8. PubMed ID: 17947462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel targeted drugs for the treatment of multiple myeloma: from bench to bedside.
    Bruno B; Giaccone L; Rotta M; Anderson K; Boccadoro M
    Leukemia; 2005 Oct; 19(10):1729-38. PubMed ID: 16094421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New horizons in multiple myeloma therapy.
    Santos ES; Kharfan-Dabaja MA
    Expert Rev Anticancer Ther; 2006 Oct; 6(10):1483-501. PubMed ID: 17069532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging pathways as individualized therapeutic target of multiple myeloma.
    Misso G; Zappavigna S; Castellano M; De Rosa G; Di Martino MT; Tagliaferri P; Tassone P; Caraglia M
    Expert Opin Biol Ther; 2013 Jun; 13 Suppl 1():S95-109. PubMed ID: 23738692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concomitant downregulation of proliferation/survival pathways dependent on FGF-R3, JAK2 and BCMA in human multiple myeloma cells by multi-kinase targeting.
    Cassinelli G; Ronchetti D; Laccabue D; Mattioli M; Cuccuru G; Favini E; Nicolini V; Greco A; Neri A; Zunino F; Lanzi C
    Biochem Pharmacol; 2009 Nov; 78(9):1139-47. PubMed ID: 19555670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioestrogen-mediated cell cycle arrest and apoptosis induction in breast cancer and multiple myeloma cells.
    Renoir JM; Bouclier C; Seguin A; Marsaud V; Sola B
    J Mol Endocrinol; 2008 Mar; 40(3):101-12. PubMed ID: 18316469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of proteasome in malignant diseases.
    Moran E; Nencioni A
    J BUON; 2007 Sep; 12 Suppl 1():S95-9. PubMed ID: 17935285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The insulin-like growth factor-I receptor inhibitor NVP-AEW541 provokes cell cycle arrest and apoptosis in multiple myeloma cells.
    Maiso P; Ocio EM; Garayoa M; Montero JC; Hofmann F; García-Echeverría C; Zimmermann J; Pandiella A; San Miguel JF
    Br J Haematol; 2008 May; 141(4):470-82. PubMed ID: 18341634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple myeloma: an update of developments in targeted therapy.
    Hussein MA
    Expert Rev Anticancer Ther; 2005 Apr; 5(2):379-89. PubMed ID: 15877532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.