BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 17205287)

  • 21. Estrogenic or antiestrogenic therapies for multiple myeloma?
    Sola B; Renoir JM
    Mol Cancer; 2007 Sep; 6():59. PubMed ID: 17888187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of c-Kit isoforms in multiple myeloma: differences in signaling and drug sensitivity.
    Montero JC; López-Pérez R; San Miguel JF; Pandiella A
    Haematologica; 2008 Jun; 93(6):851-9. PubMed ID: 18443272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bortezomib, dexamethasone, and fibroblast growth factor receptor 3-specific tyrosine kinase inhibitor in t(4;14) myeloma.
    Bisping G; Wenning D; Kropff M; Gustavus D; Müller-Tidow C; Stelljes M; Munzert G; Hilberg F; Roth GJ; Stefanic M; Volpert S; Mesters RM; Berdel WE; Kienast J
    Clin Cancer Res; 2009 Jan; 15(2):520-31. PubMed ID: 19147757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Caveolin-1 as a potential new therapeutic target in multiple myeloma.
    Podar K; Anderson KC
    Cancer Lett; 2006 Feb; 233(1):10-5. PubMed ID: 16473666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overcoming apoptosis deficiency of melanoma-hope for new therapeutic approaches.
    Eberle J; Kurbanov BM; Hossini AM; Trefzer U; Fecker LF
    Drug Resist Updat; 2007 Dec; 10(6):218-34. PubMed ID: 18054518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathophysiology of multiple myeloma bone disease.
    Lentzsch S; Ehrlich LA; Roodman GD
    Hematol Oncol Clin North Am; 2007 Dec; 21(6):1035-49, viii. PubMed ID: 17996587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of the insulin-like growth factor 1 receptor axis in multiple myeloma.
    Menu E; van Valckenborgh E; van Camp B; Vanderkerken K
    Arch Physiol Biochem; 2009 May; 115(2):49-57. PubMed ID: 19234898
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteasome inhibitors in multiple myeloma.
    Anderson KC
    Semin Oncol; 2009 Apr; 36(2 Suppl 1):S20-6. PubMed ID: 19393832
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New approaches in metastatic melanoma: biological and molecular targeted therapies.
    Lejeune FJ; Rimoldi D; Speiser D
    Expert Rev Anticancer Ther; 2007 May; 7(5):701-13. PubMed ID: 17492933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple myeloma: a prototypic disease model for the characterization and therapeutic targeting of interactions between tumor cells and their local microenvironment.
    Mitsiades CS; Mitsiades NS; Richardson PG; Munshi NC; Anderson KC
    J Cell Biochem; 2007 Jul; 101(4):950-68. PubMed ID: 17546631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward development of a novel NOD/SCID-based in vivo strategy to model multiple myeloma pathogenesis.
    Bueno C; Lopes LF; Greaves M; Menendez P
    Exp Hematol; 2007 Oct; 35(10):1477-8. PubMed ID: 17681665
    [No Abstract]   [Full Text] [Related]  

  • 32. Proteasome inhibition and multiple myeloma.
    Kanagasabaphy P; Morgan GJ; Davies FE
    Curr Opin Investig Drugs; 2007 Jun; 8(6):447-51. PubMed ID: 17621873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of p38alpha mitogen-activated protein kinase prevents the development of osteolytic bone disease, reduces tumor burden, and increases survival in murine models of multiple myeloma.
    Vanderkerken K; Medicherla S; Coulton L; De Raeve H; Willems A; Lawson M; Van Camp B; Protter AA; Higgins LS; Menu E; Croucher PI
    Cancer Res; 2007 May; 67(10):4572-7. PubMed ID: 17495322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of lymphocyte function associated antigen 1 by LFA878 induces apoptosis in multiple myeloma cells and is associated with downregulation of the focal adhesion kinase/phosphatidylinositol 3 kinase/Akt pathway.
    Schmidmaier R; Mandl-Weber S; Gaul L; Baumann P; Bumeder I; Straka C; Emmerich B
    Int J Oncol; 2007 Oct; 31(4):969-76. PubMed ID: 17786331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth factors and antiapoptotic signaling pathways in multiple myeloma.
    van de Donk NW; Lokhorst HM; Bloem AC
    Leukemia; 2005 Dec; 19(12):2177-85. PubMed ID: 16239913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of toll-like receptors in multiple myeloma and recent advances.
    Thakur KK; Bolshette NB; Trandafir C; Jamdade VS; Istrate A; Gogoi R; Cucuianu A
    Exp Hematol; 2015 Mar; 43(3):158-67. PubMed ID: 25462020
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma.
    Heath DJ; Vanderkerken K; Cheng X; Gallagher O; Prideaux M; Murali R; Croucher PI
    Cancer Res; 2007 Jan; 67(1):202-8. PubMed ID: 17210700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Therapeutic potential of CCR1 antagonists for multiple myeloma.
    Karash AR; Gilchrist A
    Future Med Chem; 2011 Nov; 3(15):1889-908. PubMed ID: 22023033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The impact of NF-κB signaling on pathogenesis and current treatment strategies in multiple myeloma.
    Vrábel D; Pour L; Ševčíková S
    Blood Rev; 2019 Mar; 34():56-66. PubMed ID: 30501907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myelosuppression associated with novel therapies in patients with multiple myeloma: consensus statement of the IMF Nurse Leadership Board.
    Miceli T; Colson K; Gavino M; Lilleby K;
    Clin J Oncol Nurs; 2008 Jun; 12(3 Suppl):13-20. PubMed ID: 18490253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.