BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 17205374)

  • 1. Feature-map vectors: a new class of informative descriptors for computational drug discovery.
    Landrum GA; Penzotti JE; Putta S
    J Comput Aided Mol Des; 2006 Dec; 20(12):751-62. PubMed ID: 17205374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating partial matches within multi-objective pharmacophore identification.
    Cottrell SJ; Gillet VJ; Taylor R
    J Comput Aided Mol Des; 2006 Dec; 20(12):735-49. PubMed ID: 17203366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards more accurate pharmacophore modeling: Multicomplex-based comprehensive pharmacophore map and most-frequent-feature pharmacophore model of CDK2.
    Zou J; Xie HZ; Yang SY; Chen JJ; Ren JX; Wei YQ
    J Mol Graph Model; 2008 Nov; 27(4):430-8. PubMed ID: 18786843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GRID-based three-dimensional pharmacophores I: FLAPpharm, a novel approach for pharmacophore elucidation.
    Cross S; Baroni M; Goracci L; Cruciani G
    J Chem Inf Model; 2012 Oct; 52(10):2587-98. PubMed ID: 22970894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation mining: an algorithm for finding biologically relevant conformations.
    Putta S; Landrum GA; Penzotti JE
    J Med Chem; 2005 May; 48(9):3313-8. PubMed ID: 15857136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SitePrint: three-dimensional pharmacophore descriptors derived from protein binding sites for family based active site analysis, classification, and drug design.
    Arnold JR; Burdick KW; Pegg SC; Toba S; Lamb ML; Kuntz ID
    J Chem Inf Comput Sci; 2004; 44(6):2190-8. PubMed ID: 15554689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using pharmacophore models to gain insight into structural binding and virtual screening: an application study with CDK2 and human DHFR.
    Toba S; Srinivasan J; Maynard AJ; Sutter J
    J Chem Inf Model; 2006; 46(2):728-35. PubMed ID: 16563003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring.
    Zhang Q; Muegge I
    J Med Chem; 2006 Mar; 49(5):1536-48. PubMed ID: 16509572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecule-pharmacophore superpositioning and pattern matching in computational drug design.
    Wolber G; Seidel T; Bendix F; Langer T
    Drug Discov Today; 2008 Jan; 13(1-2):23-9. PubMed ID: 18190860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pocket v.2: further developments on receptor-based pharmacophore modeling.
    Chen J; Lai L
    J Chem Inf Model; 2006; 46(6):2684-91. PubMed ID: 17125208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GALAHAD: 1. pharmacophore identification by hypermolecular alignment of ligands in 3D.
    Richmond NJ; Abrams CA; Wolohan PR; Abrahamian E; Willett P; Clark RD
    J Comput Aided Mol Des; 2006 Sep; 20(9):567-87. PubMed ID: 17051338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible 3D pharmacophores as descriptors of dynamic biological space.
    Nettles JH; Jenkins JL; Williams C; Clark AM; Bender A; Deng Z; Davies JW; Glick M
    J Mol Graph Model; 2007 Oct; 26(3):622-33. PubMed ID: 17395510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The FlexX database docking environment--rational extraction of receptor based pharmacophores.
    Claussen H; Gastreich M; Apelt V; Greene J; Hindle SA; Lemmen C
    Curr Drug Discov Technol; 2004 Jan; 1(1):49-60. PubMed ID: 16472219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GRID-based three-dimensional pharmacophores II: PharmBench, a benchmark data set for evaluating pharmacophore elucidation methods.
    Cross S; Ortuso F; Baroni M; Costa G; Distinto S; Moraca F; Alcaro S; Cruciani G
    J Chem Inf Model; 2012 Oct; 52(10):2599-608. PubMed ID: 22970854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ranking poses in structure-based lead discovery and optimization: current trends in scoring function development.
    Rajamani R; Good AC
    Curr Opin Drug Discov Devel; 2007 May; 10(3):308-15. PubMed ID: 17554857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting protein-ligand binding affinities using novel geometrical descriptors and machine-learning methods.
    Deng W; Breneman C; Embrechts MJ
    J Chem Inf Comput Sci; 2004; 44(2):699-703. PubMed ID: 15032552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of AMANDA, a new algorithm for selecting highly relevant regions in Molecular Interaction Fields.
    Durán A; Martínez GC; Pastor M
    J Chem Inf Model; 2008 Sep; 48(9):1813-23. PubMed ID: 18693718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinatorial Consensus Scoring for Ligand-Based Virtual Fragment Screening: A Comparative Case Study for Serotonin 5-HT(3)A, Histamine H(1), and Histamine H(4) Receptors.
    Schultes S; Kooistra AJ; Vischer HF; Nijmeijer S; Haaksma EE; Leurs R; de Esch IJ; de Graaf C
    J Chem Inf Model; 2015 May; 55(5):1030-44. PubMed ID: 25815783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.