BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 17205374)

  • 21. Beware of machine learning-based scoring functions-on the danger of developing black boxes.
    Gabel J; Desaphy J; Rognan D
    J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Form follows function: shape analysis of protein cavities for receptor-based drug design.
    Weisel M; Proschak E; Kriegl JM; Schneider G
    Proteomics; 2009 Jan; 9(2):451-9. PubMed ID: 19142949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient overlay of small organic molecules using 3D pharmacophores.
    Wolber G; Dornhofer AA; Langer T
    J Comput Aided Mol Des; 2006 Dec; 20(12):773-88. PubMed ID: 17051340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of Molecular Descriptors on Computational Models.
    Grisoni F; Consonni V; Todeschini R
    Methods Mol Biol; 2018; 1825():171-209. PubMed ID: 30334206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of a tightly bound water molecule on scaffold diversity in the computer-aided de novo ligand design of CDK2 inhibitors.
    García-Sosa AT; Mancera RL
    J Mol Model; 2006 Mar; 12(4):422-31. PubMed ID: 16374623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generalized modeling of enzyme-ligand interactions using proteochemometrics and local protein substructures.
    Strömbergsson H; Kryshtafovych A; Prusis P; Fidelis K; Wikberg JE; Komorowski J; Hvidsten TR
    Proteins; 2006 Nov; 65(3):568-79. PubMed ID: 16948162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets.
    Xu W; Lucke AJ; Fairlie DP
    J Mol Graph Model; 2015 Apr; 57():76-88. PubMed ID: 25682361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Is it possible to increase hit rates in structure-based virtual screening by pharmacophore filtering? An investigation of the advantages and pitfalls of post-filtering.
    Muthas D; Sabnis YA; Lundborg M; Karlén A
    J Mol Graph Model; 2008 Jun; 26(8):1237-51. PubMed ID: 18203638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Virtual screening to enrich a compound collection with CDK2 inhibitors using docking, scoring, and composite scoring models.
    Cotesta S; Giordanetto F; Trosset JY; Crivori P; Kroemer RT; Stouten PF; Vulpetti A
    Proteins; 2005 Sep; 60(4):629-43. PubMed ID: 16028223
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemometric analysis of ligand receptor complementarity: identifying Complementary Ligands Based on Receptor Information (CoLiBRI).
    Oloff S; Zhang S; Sukumar N; Breneman C; Tropsha A
    J Chem Inf Model; 2006; 46(2):844-51. PubMed ID: 16563016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space.
    Koutsoukas A; Paricharak S; Galloway WR; Spring DR; Ijzerman AP; Glen RC; Marcus D; Bender A
    J Chem Inf Model; 2014 Jan; 54(1):230-42. PubMed ID: 24289493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors.
    Geppert H; Humrich J; Stumpfe D; Gärtner T; Bajorath J
    J Chem Inf Model; 2009 Apr; 49(4):767-79. PubMed ID: 19309114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New scoring functions for virtual screening from molecular dynamics simulations with a quantum-refined force-field (QRFF-MD). Application to cyclin-dependent kinase 2.
    Ferrara P; Curioni A; Vangrevelinghe E; Meyer T; Mordasini T; Andreoni W; Acklin P; Jacoby E
    J Chem Inf Model; 2006; 46(1):254-63. PubMed ID: 16426061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein-ligand-based pharmacophores: generation and utility assessment in computational ligand profiling.
    Meslamani J; Li J; Sutter J; Stevens A; Bertrand HO; Rognan D
    J Chem Inf Model; 2012 Apr; 52(4):943-55. PubMed ID: 22480372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding affinity prediction for protein-ligand complexes based on β contacts and B factor.
    Liu Q; Kwoh CK; Li J
    J Chem Inf Model; 2013 Nov; 53(11):3076-85. PubMed ID: 24191692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An efficient tool for identifying inhibitors based on 3D-QSAR and docking using feature-shape pharmacophore of biologically active conformation--a case study with CDK2/cyclinA.
    Mascarenhas NM; Ghoshal N
    Eur J Med Chem; 2008 Dec; 43(12):2807-18. PubMed ID: 18037537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting the multi-modal binding propensity of small molecules: towards an understanding of drug promiscuity.
    Park K; Lee S; Ahn HS; Kim D
    Mol Biosyst; 2009 Aug; 5(8):844-53. PubMed ID: 19603120
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative QSAR study using CoMFA, HQSAR, and FRED/SKEYS paradigms for estrogen receptor binding affinities of structurally diverse compounds.
    Waller CL
    J Chem Inf Comput Sci; 2004; 44(2):758-65. PubMed ID: 15032558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of combinatorial clustering methods on pharmacological data sets represented by machine learning-selected real molecular descriptors.
    Rivera-Borroto OM; Marrero-Ponce Y; García-de la Vega JM; Grau-Ábalo Rdel C
    J Chem Inf Model; 2011 Dec; 51(12):3036-49. PubMed ID: 22098113
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods.
    Lv W; Xue Y
    Eur J Med Chem; 2010 Mar; 45(3):1167-72. PubMed ID: 20053484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.