These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 17205584)

  • 21. Prediction of protein disorder.
    Dosztányi Z; Tompa P
    Methods Mol Biol; 2008; 426():103-15. PubMed ID: 18542859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of different assignment conditions on the determination of symmetric homodimeric structures with ARIA.
    Bardiaux B; Bernard A; Rieping W; Habeck M; Malliavin TE; Nilges M
    Proteins; 2009 May; 75(3):569-85. PubMed ID: 18951392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generative probabilistic models extend the scope of inferential structure determination.
    Olsson S; Boomsma W; Frellsen J; Bottaro S; Harder T; Ferkinghoff-Borg J; Hamelryck T
    J Magn Reson; 2011 Dec; 213(1):182-6. PubMed ID: 21993764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein folding at atomic resolution: analysis of autonomously folding supersecondary structure motifs by nuclear magnetic resonance.
    Sborgi L; Verma A; Sadqi M; de Alba E; Muñoz V
    Methods Mol Biol; 2013; 932():205-18. PubMed ID: 22987355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of protein structures in the solid state from NMR chemical shifts.
    Robustelli P; Cavalli A; Vendruscolo M
    Structure; 2008 Dec; 16(12):1764-9. PubMed ID: 19081052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hadamard frequency-encoded SOFAST-HMQC for ultrafast two-dimensional protein NMR.
    Schanda P; Brutscher B
    J Magn Reson; 2006 Feb; 178(2):334-9. PubMed ID: 16269260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Folding of small proteins by Monte Carlo simulations with chemical shift restraints without the use of molecular fragment replacement or structural homology.
    Robustelli P; Cavalli A; Dobson CM; Vendruscolo M; Salvatella X
    J Phys Chem B; 2009 Jun; 113(22):7890-6. PubMed ID: 19425536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A minima hopping study of all-atom protein folding and structure prediction.
    Roy S; Goedecker S; Field MJ; Penev E
    J Phys Chem B; 2009 May; 113(20):7315-21. PubMed ID: 19391598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences.
    Jarymowycz VA; Stone MJ
    Chem Rev; 2006 May; 106(5):1624-71. PubMed ID: 16683748
    [No Abstract]   [Full Text] [Related]  

  • 30. Characterization of folding the four-helix bundle protein Rop by real-time NMR.
    van Nuland NA; Dobson CM; Regan L
    Protein Eng Des Sel; 2008 Mar; 21(3):165-70. PubMed ID: 18299292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast and accurate predictions of protein NMR chemical shifts from interatomic distances.
    Kohlhoff KJ; Robustelli P; Cavalli A; Salvatella X; Vendruscolo M
    J Am Chem Soc; 2009 Oct; 131(39):13894-5. PubMed ID: 19739624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exchange rate constants of invisible protons in proteins determined by NMR spectroscopy.
    Segawa T; Kateb F; Duma L; Bodenhausen G; Pelupessy P
    Chembiochem; 2008 Mar; 9(4):537-42. PubMed ID: 18247446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The highly cooperative folding of small naturally occurring proteins is likely the result of natural selection.
    Watters AL; Deka P; Corrent C; Callender D; Varani G; Sosnick T; Baker D
    Cell; 2007 Feb; 128(3):613-24. PubMed ID: 17289578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated structure determination of proteins with the SAIL-FLYA NMR method.
    Takeda M; Ikeya T; Güntert P; Kainosho M
    Nat Protoc; 2007; 2(11):2896-902. PubMed ID: 18007625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of relaxation enhancements in a paramagnetic environment for the structure determination of proteins using NMR spectroscopy.
    Madl T; Bermel W; Zangger K
    Angew Chem Int Ed Engl; 2009; 48(44):8259-62. PubMed ID: 19774576
    [No Abstract]   [Full Text] [Related]  

  • 36. From biomolecular structure to functional understanding: new NMR developments narrow the gap.
    Grzesiek S; Sass HJ
    Curr Opin Struct Biol; 2009 Oct; 19(5):585-95. PubMed ID: 19716691
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing conformational fluctuation of proteins by pressure perturbation.
    Akasaka K
    Chem Rev; 2006 May; 106(5):1814-35. PubMed ID: 16683756
    [No Abstract]   [Full Text] [Related]  

  • 38. Improved segmental isotope labeling methods for the NMR study of multidomain or large proteins: application to the RRMs of Npl3p and hnRNP L.
    Skrisovska L; Allain FH
    J Mol Biol; 2008 Jan; 375(1):151-64. PubMed ID: 17936301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loop 3 of short neurotoxin II is an additional interaction site with membrane-bound nicotinic acetylcholine receptor as detected by solid-state NMR spectroscopy.
    Krabben L; van Rossum BJ; Jehle S; Bocharov E; Lyukmanova EN; Schulga AA; Arseniev A; Hucho F; Oschkinat H
    J Mol Biol; 2009 Jul; 390(4):662-71. PubMed ID: 19447114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The way to NMR structures of proteins.
    Wüthrich K
    Nat Struct Biol; 2001 Nov; 8(11):923-5. PubMed ID: 11685234
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.