These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17206268)

  • 1. Design method for small-f-number microlenses based on a finite thickness model in combination with the Yang-Gu phase-retrieval algorithm.
    Rydberg C; Gu BY; Yang GZ
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):517-21. PubMed ID: 17206268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm.
    Di F; Yingbai Y; Guofan J; Qiaofeng T; Liu H
    J Opt Soc Am A Opt Image Sci Vis; 2003 Sep; 20(9):1739-46. PubMed ID: 12968646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal design of SPP-based metallic nanoaperture optical elements by using Yang-Gu algorithm.
    Zhu Q; Ye J; Wang D; Gu B; Zhang Y
    Opt Express; 2011 May; 19(10):9512-22. PubMed ID: 21643208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algorithm based on rigorous coupled-wave analysis for diffractive optical element design.
    Chang NY; Kuo CJ
    J Opt Soc Am A Opt Image Sci Vis; 2001 Oct; 18(10):2491-501. PubMed ID: 11583266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffractive-phase-element design that implements several optical functions.
    Gu BY; Yang GZ; Dong BZ; Chang MP; Ersoy OK
    Appl Opt; 1995 May; 34(14):2564-70. PubMed ID: 21052394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of microlenses with long focal depth based on the general focal length function.
    Lin J; Liu J; Ye J; Liu S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jun; 24(6):1747-51. PubMed ID: 17491644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffractive phase elements for beam shaping: a new design method.
    Tan X; Gu BY; Yang GZ; Dong BZ
    Appl Opt; 1995 Mar; 34(8):1314-20. PubMed ID: 21037662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Focusing diffractive cylindrical mirrors: rigorous evaluation of various design methods.
    Bendickson JM; Glytsis EN; Gaylord TK
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jul; 18(7):1487-94. PubMed ID: 11444540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design.
    Mellin S; Nordin G
    Opt Express; 2001 Jun; 8(13):705-22. PubMed ID: 19421262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison.
    Yang GZ; Dong BZ; Gu BY; Zhuang JY; Ersoy OK
    Appl Opt; 1994 Jan; 33(2):209-18. PubMed ID: 20862010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of binary diffractive microlenses with subwavelength structures using the genetic algorithm.
    Shirakawa T; Ishikawa KL; Suzuki S; Yamada Y; Takahashi H
    Opt Express; 2010 Apr; 18(8):8383-91. PubMed ID: 20588683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New design model for high efficiency cylindrical diffractive microlenses.
    Li Y; Zhao H; Feng SF; Ye JS; Wang XK; Sun WF; Han P; Zhang Y
    Sci Rep; 2017 Nov; 7(1):16334. PubMed ID: 29180786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of all-glass multilayer phase gratings for cylindrical microlenses.
    Hudelist F; Waddie AJ; Taghizadeh MR
    Opt Lett; 2009 Jun; 34(11):1681-3. PubMed ID: 19488147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rigorous electromagnetic analysis of the common focusing characteristics of a cylindrical microlens with long focal depth and under multiwavelength illumination.
    Wang SQ; Liu J; Gu BY; Wang YQ; Hu B; Sun XD; Di S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):512-6. PubMed ID: 17206267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and fabrication of continuous-profile diffractive micro-optical elements as a beam splitter.
    Feng D; Yan Y; Jin G; Fan S
    Appl Opt; 2004 Oct; 43(29):5476-80. PubMed ID: 15508604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field stitching algorithm for the analysis of electrically large diffractive optical elements.
    Prather DW; Shi S; Bergey JS
    Opt Lett; 1999 Mar; 24(5):273-5. PubMed ID: 18071477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-focal-spot terahertz diffractive optical element-iterative design and neural network approach.
    Komorowski P; CzerwiƄska P; Surma M; Zagrajek P; Piramidowicz R; Siemion A
    Opt Express; 2021 Mar; 29(7):11243-11253. PubMed ID: 33820240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of improved first Rayleigh-Sommerfeld method to analyze the performance of cylindrical microlenses with different f-numbers.
    Ye JS; Gu BY; Dong BZ; Liu ST
    J Opt Soc Am A Opt Image Sci Vis; 2005 May; 22(5):862-9. PubMed ID: 15898545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient optimization of diffractive optical elements based on rigorous diffraction models.
    Testorf ME; Fiddy MA
    J Opt Soc Am A Opt Image Sci Vis; 2001 Nov; 18(11):2908-14. PubMed ID: 11688881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation.
    Glytsis EN; Harrigan ME; Hirayama K; Gaylord TK
    Appl Opt; 1998 Jan; 37(1):34-43. PubMed ID: 18268557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.