These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 17207494)

  • 1. Hydrophobic interaction chromatography of proteins. II. Solution thermodynamic properties as a determinant of retention.
    To BC; Lenhoff AM
    J Chromatogr A; 2007 Feb; 1141(2):235-43. PubMed ID: 17207494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobic interaction chromatography of proteins. I. The effects of protein and adsorbent properties on retention and recovery.
    To BC; Lenhoff AM
    J Chromatogr A; 2007 Feb; 1141(2):191-205. PubMed ID: 17207806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput protein precipitation and hydrophobic interaction chromatography: salt effects and thermodynamic interrelation.
    Nfor BK; Hylkema NN; Wiedhaup KR; Verhaert PD; van der Wielen LA; Ottens M
    J Chromatogr A; 2011 Dec; 1218(49):8958-73. PubMed ID: 21868020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalizing a two-conformation model for describing salt and temperature effects on protein retention and stability in hydrophobic interaction chromatography.
    Xiao Y; Rathore A; O'Connell JP; Fernandez EJ
    J Chromatogr A; 2007 Jul; 1157(1-2):197-206. PubMed ID: 17524412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of protein retention times in gradient hydrophobic interaction chromatographic systems.
    Chen J; Yang T; Cramer SM
    J Chromatogr A; 2008 Jan; 1177(2):207-14. PubMed ID: 18048048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New approaches for predicting protein retention time in hydrophobic interaction chromatography.
    Lienqueo ME; Mahn A; Navarro G; Salgado JC; Perez-Acle T; Rapaport I; Asenjo JA
    J Mol Recognit; 2006; 19(4):260-9. PubMed ID: 16752432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between the osmotic second virial coefficient and the solubility of proteins.
    Ruppert S; Sandler SI; Lenhoff AM
    Biotechnol Prog; 2001; 17(1):182-7. PubMed ID: 11170497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein instability during HIC: describing the effects of mobile phase conditions on instability and chromatographic retention.
    Xiao Y; Freed AS; Jones TT; Makrodimitris K; O'Connell JP; Fernandez EJ
    Biotechnol Bioeng; 2006 Apr; 93(6):1177-89. PubMed ID: 16444741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysozyme-lysozyme self-interactions as assessed by the osmotic second virial coefficient: impact for physical protein stabilization.
    Le Brun V; Friess W; Schultz-Fademrecht T; Muehlau S; Garidel P
    Biotechnol J; 2009 Sep; 4(9):1305-19. PubMed ID: 19579219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic interaction chromatography of proteins III. Transport and kinetic parameters in isocratic elution.
    To BC; Lenhoff AM
    J Chromatogr A; 2008 Sep; 1205(1-2):46-59. PubMed ID: 18718599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixed retention mechanism of proteins in weak anion-exchange chromatography.
    Liu P; Yang H; Geng X
    J Chromatogr A; 2009 Oct; 1216(44):7497-504. PubMed ID: 19619880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein precipitation and denaturation by dimethyl sulfoxide.
    Arakawa T; Kita Y; Timasheff SN
    Biophys Chem; 2007 Dec; 131(1-3):62-70. PubMed ID: 17904724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solubility of lysozyme in the presence of aqueous chloride salts: common-ion effect and its role on solubility and crystal thermodynamics.
    Annunziata O; Payne A; Wang Y
    J Am Chem Soc; 2008 Oct; 130(40):13347-52. PubMed ID: 18788805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of protein retention and selectivity in HIC systems using quantitative structure retention relationship models.
    Ladiwala A; Xia F; Luo Q; Breneman CM; Cramer SM
    Biotechnol Bioeng; 2006 Apr; 93(5):836-50. PubMed ID: 16276531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein adsorption isotherm behavior in hydrophobic interaction chromatography.
    Chen J; Cramer SM
    J Chromatogr A; 2007 Sep; 1165(1-2):67-77. PubMed ID: 17698076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory and use of hydrophobic interaction chromatography in protein purification applications.
    McCue JT
    Methods Enzymol; 2009; 463():405-14. PubMed ID: 19892185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput screening of chromatographic separations: II. Hydrophobic interaction.
    Kramarczyk JF; Kelley BD; Coffman JL
    Biotechnol Bioeng; 2008 Jul; 100(4):707-20. PubMed ID: 18496875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The thermodynamic principles of ligand binding in chromatography and biology.
    Mollerup JM
    J Biotechnol; 2007 Oct; 132(2):187-95. PubMed ID: 17714818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel in situ polymerized coatings for hydrophobic interaction chromatography media.
    Fexby S; Ihre H; Bülow L; Van Alstine JM
    J Chromatogr A; 2007 Aug; 1161(1-2):234-41. PubMed ID: 17624362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein instability during HIC: hydrogen exchange labeling analysis and a framework for describing mobile and stationary phase effects.
    Xiao Y; Jones TT; Laurent AH; O'Connell JP; Przybycien TM; Fernandez EJ
    Biotechnol Bioeng; 2007 Jan; 96(1):80-93. PubMed ID: 16952152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.