These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 17207603)
21. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus. Wang F; He J; Shi J; Zheng T; Xu F; Wu G; Liu R; Liu S G3 (Bethesda); 2016 Apr; 6(4):1073-81. PubMed ID: 26896439 [TBL] [Abstract][Full Text] [Related]
23. Effect of germination potential on storage lipids and transcriptome changes in premature developing seeds of oilseed rape (Brassica napus L.). Zhu L; Zhao X; Xu Y; Wang Q; Wang H; Wu D; Jiang L Theor Appl Genet; 2020 Oct; 133(10):2839-2852. PubMed ID: 32617616 [TBL] [Abstract][Full Text] [Related]
24. Epigenetic chromatin modifiers in barley: I. Cloning, mapping and expression analysis of the plant specific HD2 family of histone deacetylases from barley, during seed development and after hormonal treatment. Demetriou K; Kapazoglou A; Tondelli A; Francia E; Stanca MA; Bladenopoulos K; Tsaftaris AS Physiol Plant; 2009 Jul; 136(3):358-68. PubMed ID: 19470089 [TBL] [Abstract][Full Text] [Related]
25. Over-expression of Brassica napus phosphatidylinositol-phospholipase C2 in canola induces significant changes in gene expression and phytohormone distribution patterns, enhances drought tolerance and promotes early flowering and maturation. Georges F; DAS S; Ray H; Bock C; Nokhrina K; Kolla VA; Keller W Plant Cell Environ; 2009 Dec; 32(12):1664-81. PubMed ID: 19671099 [TBL] [Abstract][Full Text] [Related]
26. Lipoxygenases during Brassica napus seed germination. Terp N; Göbel C; Brandt A; Feussner I Phytochemistry; 2006 Sep; 67(18):2030-40. PubMed ID: 16884747 [TBL] [Abstract][Full Text] [Related]
27. Tissue-printing methods for localization of RNA and proteins that control seed dormancy and germination. Pluskota WE; Bradford KJ; Nonogaki H Methods Mol Biol; 2011; 773():329-39. PubMed ID: 21898264 [TBL] [Abstract][Full Text] [Related]
28. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Liu PP; Montgomery TA; Fahlgren N; Kasschau KD; Nonogaki H; Carrington JC Plant J; 2007 Oct; 52(1):133-46. PubMed ID: 17672844 [TBL] [Abstract][Full Text] [Related]
29. Gene expression at early stages of Brassica napus seed development as revealed by transcript profiling of seed-abundant cDNAs. Dong J; Keller WA; Yan W; Georges F Planta; 2004 Jan; 218(3):483-91. PubMed ID: 14574574 [TBL] [Abstract][Full Text] [Related]
30. Hormonal regulation of oil accumulation in Brassica seeds: metabolism and biological activity of ABA, 7'-, 8'- and 9'-hydroxy ABA in microspore derived embryos of B. napus. Jadhav AS; Taylor DC; Giblin M; Ferrie AM; Ambrose SJ; Ross AR; Nelson KM; Irina Zaharia L; Sharma N; Anderson M; Fobert PR; Abrams SR Phytochemistry; 2008 Nov; 69(15):2678-88. PubMed ID: 18823922 [TBL] [Abstract][Full Text] [Related]
32. Cloning and characterization of microRNAs from Brassica napus. Wang L; Wang MB; Tu JX; Helliwell CA; Waterhouse PM; Dennis ES; Fu TD; Fan YL FEBS Lett; 2007 Aug; 581(20):3848-56. PubMed ID: 17659282 [TBL] [Abstract][Full Text] [Related]
33. A gene co-expression network predicts functional genes controlling the re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds. Costa MC; Righetti K; Nijveen H; Yazdanpanah F; Ligterink W; Buitink J; Hilhorst HW Planta; 2015 Aug; 242(2):435-49. PubMed ID: 25809152 [TBL] [Abstract][Full Text] [Related]
34. Integration of proteomic and genomic approaches to dissect seed germination vigor in Brassica napus seeds differing in oil content. Gu J; Hou D; Li Y; Chao H; Zhang K; Wang H; Xiang J; Raboanatahiry N; Wang B; Li M BMC Plant Biol; 2019 Jan; 19(1):21. PubMed ID: 30634904 [TBL] [Abstract][Full Text] [Related]
35. Genetic analysis of seed coat development in Arabidopsis. Haughn G; Chaudhury A Trends Plant Sci; 2005 Oct; 10(10):472-7. PubMed ID: 16153880 [TBL] [Abstract][Full Text] [Related]
36. [Obtaining new germplast of Brassica napus with high oleic acid content by RNA interference and marker-free transformation of Fad2 gene]. Chen W; Li JF; Dong YS; Li GZ; Cun SX; Wang JQ Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Dec; 32(6):665-71. PubMed ID: 17167203 [TBL] [Abstract][Full Text] [Related]
37. Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis. Gao Y; Zeng Q; Guo J; Cheng J; Ellis BE; Chen JG Plant J; 2007 Dec; 52(6):1001-13. PubMed ID: 17894782 [TBL] [Abstract][Full Text] [Related]
38. One of the three proteinase inhibitor genes newly identified in the Brassica napus genome codes for an inhibitor of glutamyl endopeptidase. De Leo F; Volpicella M; Sciancalepore M; Gallerani R; Ceci LR FEBS Lett; 2006 Feb; 580(3):948-54. PubMed ID: 16438970 [TBL] [Abstract][Full Text] [Related]
39. Antisense expression of 3-oxoacyl-ACP reductase affects whole plant productivity and causes collateral changes in activity of fatty acid synthase components. O'Hara P; Slabas AR; Fawcett T Plant Cell Physiol; 2007 May; 48(5):736-44. PubMed ID: 17401135 [TBL] [Abstract][Full Text] [Related]
40. Effects of osmopriming on seed germination of canola (Brassica napus L.) under salinity stress. Ehsanfar S; Modarres-Sanavy SA; Tavakkol-Afshari R Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):155-9. PubMed ID: 17390787 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]