These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 17207806)
1. Hydrophobic interaction chromatography of proteins. I. The effects of protein and adsorbent properties on retention and recovery. To BC; Lenhoff AM J Chromatogr A; 2007 Feb; 1141(2):191-205. PubMed ID: 17207806 [TBL] [Abstract][Full Text] [Related]
2. Hydrophobic interaction chromatography of proteins III. Transport and kinetic parameters in isocratic elution. To BC; Lenhoff AM J Chromatogr A; 2008 Sep; 1205(1-2):46-59. PubMed ID: 18718599 [TBL] [Abstract][Full Text] [Related]
3. Hydrophobic interaction chromatography of proteins. II. Solution thermodynamic properties as a determinant of retention. To BC; Lenhoff AM J Chromatogr A; 2007 Feb; 1141(2):235-43. PubMed ID: 17207494 [TBL] [Abstract][Full Text] [Related]
4. Hydrophobic interaction chromatography selectivity changes among three stable proteins: conformation does not play a major role. Jones TT; Fernandez EJ Biotechnol Bioeng; 2004 Aug; 87(3):388-99. PubMed ID: 15281113 [TBL] [Abstract][Full Text] [Related]
5. Novel in situ polymerized coatings for hydrophobic interaction chromatography media. Fexby S; Ihre H; Bülow L; Van Alstine JM J Chromatogr A; 2007 Aug; 1161(1-2):234-41. PubMed ID: 17624362 [TBL] [Abstract][Full Text] [Related]
6. Investigation of protein retention and selectivity in HIC systems using quantitative structure retention relationship models. Ladiwala A; Xia F; Luo Q; Breneman CM; Cramer SM Biotechnol Bioeng; 2006 Apr; 93(5):836-50. PubMed ID: 16276531 [TBL] [Abstract][Full Text] [Related]
7. Prediction of protein retention times in gradient hydrophobic interaction chromatographic systems. Chen J; Yang T; Cramer SM J Chromatogr A; 2008 Jan; 1177(2):207-14. PubMed ID: 18048048 [TBL] [Abstract][Full Text] [Related]
8. Protein instability during HIC: describing the effects of mobile phase conditions on instability and chromatographic retention. Xiao Y; Freed AS; Jones TT; Makrodimitris K; O'Connell JP; Fernandez EJ Biotechnol Bioeng; 2006 Apr; 93(6):1177-89. PubMed ID: 16444741 [TBL] [Abstract][Full Text] [Related]
9. Effect of adsorbent porosity on performance of expanded bed chromatography of proteins. Gondkar S; Manudhane K; Amritkar N; Pai A; Lali A Biotechnol Prog; 2001; 17(3):522-9. PubMed ID: 11386874 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics simulation of the effect of ligand homogeneity on protein behavior in hydrophobic charge induction chromatography. Zhang L; Bai S; Sun Y J Mol Graph Model; 2010 Jun; 28(8):863-9. PubMed ID: 20418134 [TBL] [Abstract][Full Text] [Related]
11. Hydrophobic interaction chromatography of proteins. IV. Protein adsorption capacity and transport in preparative mode. To BC; Lenhoff AM J Chromatogr A; 2011 Jan; 1218(3):427-40. PubMed ID: 21176838 [TBL] [Abstract][Full Text] [Related]
12. Molecular insight into protein conformational transition in hydrophobic charge induction chromatography: a molecular dynamics simulation. Zhang L; Zhao G; Sun Y J Phys Chem B; 2009 May; 113(19):6873-80. PubMed ID: 19374422 [TBL] [Abstract][Full Text] [Related]
13. Theory and use of hydrophobic interaction chromatography in protein purification applications. McCue JT Methods Enzymol; 2009; 463():405-14. PubMed ID: 19892185 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of selectivity changes in HIC systems using a preferential interaction based analysis. Xia F; Nagrath D; Garde S; Cramer SM Biotechnol Bioeng; 2004 Aug; 87(3):354-63. PubMed ID: 15281110 [TBL] [Abstract][Full Text] [Related]
15. 3D structure-based protein retention prediction for ion-exchange chromatography. Dismer F; Hubbuch J J Chromatogr A; 2010 Feb; 1217(8):1343-53. PubMed ID: 20089254 [TBL] [Abstract][Full Text] [Related]
16. 5-Aminoindole, a new ligand for hydrophobic charge induction chromatography. Zhao G; Peng G; Li F; Shi Q; Sun Y J Chromatogr A; 2008 Nov; 1211(1-2):90-8. PubMed ID: 18947830 [TBL] [Abstract][Full Text] [Related]
17. Dynamic control of protein conformation transition in chromatographic separation based on hydrophobic interactions: molecular dynamics simulation. Zhang L; Lu D; Liu Z J Chromatogr A; 2009 Mar; 1216(12):2483-90. PubMed ID: 19178912 [TBL] [Abstract][Full Text] [Related]
18. Generalizing a two-conformation model for describing salt and temperature effects on protein retention and stability in hydrophobic interaction chromatography. Xiao Y; Rathore A; O'Connell JP; Fernandez EJ J Chromatogr A; 2007 Jul; 1157(1-2):197-206. PubMed ID: 17524412 [TBL] [Abstract][Full Text] [Related]
19. Influence of surface modification on protein retention in ion-exchange chromatography. Evaluation using different retention models. Bruch T; Graalfs H; Jacob L; Frech C J Chromatogr A; 2009 Feb; 1216(6):919-26. PubMed ID: 19111307 [TBL] [Abstract][Full Text] [Related]
20. High-throughput protein precipitation and hydrophobic interaction chromatography: salt effects and thermodynamic interrelation. Nfor BK; Hylkema NN; Wiedhaup KR; Verhaert PD; van der Wielen LA; Ottens M J Chromatogr A; 2011 Dec; 1218(49):8958-73. PubMed ID: 21868020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]